Microwave-pulse synthesis of tunable 2D porous nickel-enriched $LaMn_xNi_{1-x}O_3$ solid solution for efficient electrocatalytic urea oxidation

Zhiao Wu, ‡^a Jinglin Xian, ‡^a Jiao Dai, ‡^a Guangyu Fang, ^a Miao Fan, ^a Haoran Tian, ^a Jiayue Guo, ^a Huiyu Jiang, ^a Weilin Xu, ^a and Jun Wan *^a

Supplementary materials: 1. Fig. S1 to S19 2. Table S1 to S2

Fig. S1 Average atomic ratio of La, Ni and Mn in La $Mn_xNi_{1-x}O_3$ (*x*=0, 0.2, 0.4, 0.6, 0.8) samples.

Fig. S2 Physical image of sample reaction changes.

Fig. S3 Physical-optical photographs before and after the reaction.

Fig. S4 SEM image of LNO.

Fig. S5 TEM image of LNO.

Fig. S6 Lattice spacing of LNO , LNMO-0.4 , LNMO-0.6 , LNMO-0.8 on the (110) diffraction plane.

Fig. S7 FTIR spectrums of LaMn_xNi_{1-x}O₃ (*x*=0, 0.2, 0.4, 0.6, 0.8).

Fig. S8 XPS survey spectrum of LaMn_{*x*}Ni_{1-*x*}O₃ (*x*=0, 0.2, 0.4, 0.6, 0.8) catalysts.

Fig. S9 High-resolution XPS spectra of (A) Ni 2p and (B) Mn 2p features of LaMn_xNi_{1-x}O₃ (x=0, 0.2, 0.4, 0.6, 0.8) catalysts.

Fig. S10 High-resolution XPS spectra of O 1*s* features of LaMn_xNi_{1-x}O₃ (x=0, 0.2, 0.4, 0.6, 0.8) catalysts.

Fig. S11. EPR spectra of LNMO-0.2 and LNO.

Fig. S12 Bandgap of LaMn_xNi_{1-x}O₃ (x=0, 0.2, 0.4, 0.6, 0.8) catalysts.

Fig. S13 CV measurements in a non-faradic current region (1.13-1.23 V) at scan rates of 2 to 20 mV s⁻¹of (a) LaNiO₃, (b) LaMn_{0.2}Ni_{0.8}O₃, (c) LaMn_{0.4}Ni_{0.6}O₃, (d) LaMn_{0.6}Ni_{0.4}O₃ and (e) LaMn_{0.8}Ni_{0.2}O₃ in N₂-saturated 1.0 M KOH and 0.33 M urea solution.

Fig. S14 The durability tests of LNMO-0.2 catalysts.

Fig.S15 XRD images of LNMO-0.2 after durability tests.

Fig. S16 SEM images of LNMO-0.2 catalysts after durability tests.

Fig. S17 EDS images of LNMO-0.2 catalysts after durability tests.

Fig. S18 HRTEM images of LNMO-0.2 catalysts after durability tests.

Fig. S19 XPS images of LNMO-0.2 catalysts after durability tests.

2. Table S1 to S2

		wavelength	net intensity	concentration (ppm)	concentration (mmol L ⁻¹)	atomic ratio
x=0	La	408.671	1921	18.72496133	0.134799232	1
	Mn	257.61	35	0	0	0
	Ni	231.604	922	7.839203427	0.142691824	1.05855072
<i>x</i> =0.2	La	408.671	1820	17.74317489	0.127731444	1
	Mn	257.61	183	1.536139822	0.027961335	0.21890722
	Ni	231.604	1105	6.139000498	0.104595105	0.81886732
<i>x</i> =0.4	La	408.671	1539	15.01167002	0.108067598	1
	Mn	257.61	424	2.548949537	0.04342851	0.4018643
	Ni	231.604	510	3.591672067	0.065376826	0.60496233
<i>x</i> =0.6	La	408.671	1502	14.65200568	0.105478408	1
	Mn	257.61	699	3.689318666	0.062857899	0.59593143
	Ni	231.604	280	2.363470228	0.043020682	0.40786245
<i>x</i> =0.8	La	408.671	1326	12.9411699	0.093162263	1
	Mn	257.61	495	4.197243807	0.076399647	0.82007075
	Ni	231.604	254	1.00432257	0.017111454	0.18367366

 Table S1. The contents of different LNMO metal elements were measured by LCP-MS

		Potenial	Tafel slope	Scan rate
Electrocatalysts	Electrolyter	@10mA cm ⁻² (V)	(mV dec ⁻¹)	$(mV s^{-1})$
This work LNMO-0.2	1 M KOH+0.33 M urea	1.27	44.6	10
Co ₂ GeO ₄	1 M KOH+0.33 M urea	1.59	79	10
CuO@CuM	1 M KOH+0.5 M urea	1.44	98. 7	5
C@NiO	1 M KOH+0.33 M urea	1.36	87.2	5
Co ₂ VO ₄ /NF	1 M KOH+0.5 M urea	1.32	92	5
Co ₃ O ₄ /CC	1 M KOH+0.3 M urea	1.67	71	5
MoO ₂ @CC	1 M KOH+0.33 M urea	1.44	112.2	10
FeNi @NC	1 M KOH+0.33 M urea	1.37	71.6	1
Co ₃ S ₄ /CoO _x NTs	1 M KOH+0.5 M urea	1.4	91.3	5
FeNi Oxide-3	1 M KOH+0.33 M urea	1.49	124	1
NiAl-LDHs	1 M KOH+0.33 M urea	1.42	59.8	10
Ni@NCNT-3	1 M KOH+0.5 M urea	1.38	76	2
NF@acid-H ₂	1 M KOH+0.33 M urea	1.33	65	10
V-Ni ₃ N/NF	1 M KOH+0.5 M urea	1.361	45	-
NiCo-BDC-S-6	1 M KOH+0.33 M urea	1.326	46	5
Ni(OH)-S	1 M KOH+0.33 M urea	1.34	53.28	5

Table S2. The UOR performance comparison of different catalysts.