Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Size and orientation of PNRs characterized by PDF analysis and a statistical model in

Bi(Mg_{1/2}Ti_{1/2})O₃-PbTiO₃ ferroelectric re-entrant relaxor

Laijun Liu¹, Kaiyuan Chen^{1,2}, Dawei Wang³, Manuel Hinterstein^{4,11}, Anna-Lena Hansen⁴, Michael Knapp⁴, Biaolin Peng⁵, Xianran Xing⁶, Yuanpeng Zhang⁷, Jing Kong⁸, Abhijit Pramanick⁸, Mads Ry Vogel Jørgensen⁹, Frederick Marlton^{10*} ¹Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China

²BCMaterials, Basque center for materials Application & Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain ³School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China

⁴Institute for Applied Materials (IAM), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

⁵School of Advanced Materials and Nanotechnology, Xi'dian University, Xi'an 710071, China

⁶Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China

⁷Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

⁸Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China

⁹Department of Chemistry and iNANO, Aarhus University, 8000 Aarhus C, Denmark; MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden

¹⁰School of Mathematical and Physical Sciences, The University of Technology Sydney, Sydney, NSW 2007, Australia ¹¹Fraunhofer IWM, 79108 Freiburg, Germany

Supplementary Information

Figure S1: Illustration of the calculation of angular correlations for nearest neighbors in two dimensions. m_i and m_j correspond to the displacement vectors describing atom-atom pair *i* and *j*. θ_{ij} is the angle formed between the directions of the two displacement vectors.

Figure S2 Neutron powder diffraction Rietveld refinement fit of 60BMT-PT at 100 K with a Pm-3m cubic unit cell.

Figure S3 Neutron powder diffraction Rietveld refinement fit of 65BMT-PT at 100 K with a Pm-3m cubic unit cell.

Table S1 Rietveld refinement results for 60BMT-PT and 65BMT-PT using different models

Sample	Space	Cell parameter		R value		
	group	a, b and c (Å)	α,β and γ (°)	R_p	R_{wp}	R_e
65BMT- PT	Pm-3m	3.9896	90	17.2	16.7	0.145
	P4mm	3.9759, 4.0293	90	10.3	11.5	0.126
	R3m	5.6436, 6.9093	90, 90, 120	16.7	18.4	0.147
	<i>Pm</i> -3 <i>m</i> +	3.9836	90	6.87	6.39	0.141
	R3m	5.6582, 6.9281	90, 90, 120			
	<i>Pm-3m</i> +	3.9734	90	8.12	9.42	0.134
	P4mm	3.9745, 4.0362	90			
60BMT- PT	Pm-3m	3.9873	90	9.97	9.26	0.155
	P4mm	3.9700, 4.0391	90	9.21	10.6	0.133
	R3m	5.6398, 6.9071	90, 90, 120	16.9	17.0	0.156
	<i>Pm</i> -3 <i>m</i> +	3.9873	90	13.5	12.1	0.156
	R3m	5.6517, 6.9276	90, 90, 120			
	<i>Pm</i> -3 <i>m</i> +	3.9999	90	6.92	7.45	0.136
	P4mm	3.9681, 4.0383	90			

Figure S4 Neutron pair distribution function of 65BMT-PT.

Figure S5 Neutron pair distribution function of 60BMT-PT.

Stereographic projections

For a directional perspective, stereographic projections were produced from the directional atomic displacements. The displacement vectors were determined, and their angles relative to the [001] and [100] cubic directions were calculated and binned into "windows" on the stereograph of an equal solid angle. The brightness of the perceptually uniform color scale indicates the relative number of directional displacements in each angular "window".

Figure S6 The directional displacement of Bi plotted on a stereographic projection (left). Histograms of the x, y and z displacements (right).

Figure S7 The directional displacement of Pb plotted on a stereographic projection (left). Histograms of the x, y and z displacements (right).

Figure S8 The directional displacement of Ti plotted on a stereographic projection (left). Histograms of the x, y and z displacements (right).

Figure S9 The directional displacement of Mg plotted on a stereographic projection (left). Histograms of the *x*,*y* and *z* displacements (right).