1	Unlocking the synergetic potential of cobalt iron phosphate and
2	multiwalled carbon nanotube composite towards supercapacitor
3	application
4	Tushar B. Deshmukh ¹ , Avinash Mendhe ² , Chinmayee Padwal ³ , Deepak Dubal ³ , Dae-
5	Young Kim ⁴ , Babasaheb R. Sankapal ^{1*}
6	¹ Nanomaterial and Device Laboratory, Department of Physics, Visvesvaraya National Institute
7	of Technology, South Ambazari Road, Nagpur, Maharashtra 440010 India.
8	² Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero,
9	Giheung-gu, Yongin 17104, Republic of Korea
10	³ Centre for Materials Science, School of Chemistry and Physics, Queensland University of
11	Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
12	⁴ Department of Biological and Environmental Science, College of Life Science and
13	Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, 10326
14	Goyang-si, Gyeonggi-do, South Korea.
15	
16	
17	
10	
10	
19	
20	
21	

1 Section-I

2 Characterizations

3 X-ray diffraction (XRD) patterns for iron phosphate and copper substrate were investigated by Bruker D2-Phaser diffractometer facilities with CuK_{α} radiation (λ =1.5406 Å), 4 10 mA applied current, and 30 kV accelerating voltage. The morphological properties of the 5 thin films were captured using a field emission scanning electron microscopy (FESEM, 6 SUPRA – 40 VP, Zeiss Marlin, Germany) and an energy dispersive X-ray spectrometer (EDX). 7 8 X-ray photoelectron spectroscopy (XPS) was investigated using a Matlab 2000 photoelectron spectrophotometer and consistent AlK X-ray radiations (600 W; hv = 1486.6 eV). HR-TEM 9 analysis was performed by FEI Tecnai G2F30 (FEI, Netherland). 10

11 Electrochemical Study

A potentiostat (Princeton Applied Research, PARSTAT-4000, USA) with a threeelectrode configuration, electrochemical capabilities including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were studied. To investigate all electrochemical characteristics, a working electrode with active area of 1×1 cm² was used. A liquid state device was fabricated and electrochemical investigations were carried out through two electrodes configuration.

18 Section II

19 Specific capacitance values were calculated by using CV from the following equation¹

$$C_{sp} = \frac{\int IdV}{m \, v \left(V_f - V_i \right)} \tag{S1}$$

20

21 Specific capacitance values were calculated by using GCD from the following equation².

$$C_{Sp} = \frac{2I \int V dt}{m (V_f - V_i)^2}$$
(S2)

2 Where C_{sp} is specific capacitance, i is current density, m is active mass, V_f - V_i potential 3 window or working potential.

4 Specific Capacity

$$C_s = \frac{\int_{V_1}^{V_2} I(V) dV}{vm}$$
(S3)

6 where, Cs is specific capacity (C/g), I (A) is the cathodic or anodic current, dV (V) is the 7 operated potential window, v (V/s) is the applied scan rate, m (g) is the deposited mass on Cu 8 substrate.

- 9
- 10

1 Section-III

Figure S1: Comparative XRD of SS, MWCNTs, $Co_3Fe_4(PO_4)_6$, and MWCNTs/ $Co_3Fe_4(PO_4)_6$.

Figure S2 EDX analysis of MWCNTs/Co₃Fe₄(PO₄)₆ thin film

2 In our preceding article, we presented an analysis of the electrochemical performance of $Fe_7(PO_4)_6^3$ and MWCNTs/Co₂P₂O₇⁴ in a KOH electrolyte. Figure S3 illustrates the 3 comparative cyclic voltammetry (CV) of MWCNTs, Fe₇(PO₄)₆, Co₂P₂O₇, and MWCNTs/ 4 CO₃Fe₄(PO₄)₆. Notably, the potential window of MWCNTs/Co₃Fe₄(PO₄)₆ (0.9 V) surpasses that 5 of the previously reported Fe₇(PO₄)₆ (0.71 V) and Co₂P₂O₇ (0.5 V), indicating a marked 6 enhancement in the electrochemical performance of the bimetallic phosphate. Co^{+2/+1} reduction 7 potential -0.28 V and for Fe^{+3/+2} is 0.77 V, but we didn't observe any sharp reduction peak at -8 0.28 V and 0.77 V fall out of scanning voltage range. This show the fabricated material is 9 pseudocapacitive material dominated with surface redox activity contributing in the charge 10

11 storage 5-7.

12 Furthermore, there is a significant improvement in specific capacitances, with 13 MWCNTs/Co₃Fe₄(PO₄)₆ exhibiting a specific capacitance of 859 C/g, compared to 450 C/g

1 for Co₂P₂O₇ and 104 C/g (147 F/g) for Fe₇(PO₄)₆. This improvement underscores the 2 enhanced efficacy of the bimetallic phosphate in energy storage due to synergetic effect between $CO_3Fe_4(PO_4)_6$ and MWCNTs. In Figure S3, the area under the curve for 3 4 MWCNT/Co₂P₂O₇ is indeed large, mainly due to its higher mass loading of 1.7 mg compared to MWCNT/Co3Fe4(PO4)6 with only 0.2 mg. This higher mass loading contributes to its 5 lower specific capacitance. Additionally, the potential window of the electrode is also higher 6 by 0.4 V for MWCNT/Co₃Fe₄(PO₄)₆ compared to MWCNT/Co₂P₂O₇, indicating the 7 8 superiority of MWCNT/Co₃Fe₄(PO₄)₆.

- 9
- 10

Figure S4 (a) CV analysis in potential range 0 to -1.1 V (b) CV analysis in potential range -0.1 to -1 V

Figure S5 (a) CV of $Co_3Fe_4(PO_4)_6$, MWCNTs, and MWCNTs/ $Co_3Fe_4(PO_4)_6$ in 0.5 M KOH (b) corresponding Specific capacity and specific capacitance with different electrode

Figure S6 (a) CV of Co₃Fe₄(PO₄)₆, MWCNTs, and MWCNTs/Co₃Fe₄(PO₄)₆ in 0.5 M KOH (b) specific capacity and capacitance of deposition time varied electrode

Figure S7 $\Delta j/2$ vs. scan rate

Figure S8 (a) CV at 100 mV/s scan rate (b) GCD at 2 mA/cm^2

Figure S9 XRD investigation before and after complete electrochemical investigation

Table No S1 XPS peak assignment			
Sr. No	Binding energy (eV)	Assigned peak	
1	29.1	P3s	
2	58.2	Fe3p	
3	135	P2p	
4	194.1	P2s	
5	285.1	C1s	
6	533.1	Ols	
7	712 to 735	Fe2p	
8	779 to 800	Co2p	
9	979	OKL1	
10	999	OKL2	

Table No S2	EIS Fittings
val	lves
Component	Value
$R_{s} \left(\Omega/cm^{2}\right)$	3.852
C_{dl1} (F/cm ²)	0.000309
$R_{ct}(\Omega/cm^2)$	0.9664
C_{dl2} (F/cm ²)	0.001625
$R_L(\Omega/cm^2)$	0.5411
W	0.1484

1 References

2	1	B. Pandit, D. P. Dubal and B. R. Sankapal, <i>Electrochim. Acta</i> , 2017, 242, 382–389.
3	2	H. M. El Sharkawy, D. M. Sayed, A. S. Dhmees, R. M. Aboushahba and N. K. Allam,
4		ACS Appl. Energy Mater., 2020, 3, 9305–9314.
5	3	T. B. Deshmukh, P. Babar, T. Kedara Shivasharma and B. R. Sankapal, Surfaces and
6		Interfaces, 2022, 35 , 102419.
7	4	A. Agarwal and B. R. Sankapal, Sustain. Energy Fuels, 2022, 6, 4085–4101.
8	5	F. Scholz, Electroanalytical methods: Guide to experiments and applications, 2010.
9	6	S. Azmi and E. Frackowiak, <i>Electrochem. commun.</i> , 2022, 138, 107289.
10	7	S. Shiraishi, Electric Double Layer Capacitor, Elsevier Ltd, 2016, vol. 2.