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Figure S1. (A) Image of PEDOT:PSS/MgSO4/EtOH mixture filled into polypropylene 
syringe being used as a mold for hydrogel formation. (B) Image of PEDOT:PSS hydrogel 
suspended inside solvent after complete cross-linking via heat treatment.



Figure S2. Image of PEDOT:PSS hydrogel retrieved after heat treatment which was formed 
inside (A) wide mouth cylindrical jar, and (B) 3ml polypropylene syringe.



Figure S3. Image of PEDOT:PSS solution after heat treatment. (A) Samples in which 10wt%, 
20wt%, 30wt% EtOH was added (respectively, from left to right), without MgSO4 addition. 
(B) Sample in which 10wt%, 20wt%, 30wt% EtOH was added (respectively, from left to 
right), where MgSO4 was added as cross-linking agent.
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Figure S4. (A) Voltage-temperature plot of a typical response cycle by heating and 
subsequent cooling of porous PEDOT:PSS. (B) Magnified voltage-time plot showing 
response time of porous PEDOT:PSS for temperature detection.



Table S1. Component analysis of PEDOT:PSS/0.5M MgSO4/EtOH viscous mixture
Component Solution 

Volume 
[mL]

Solid component Solid 
content

[g]
Solid 

density
[g cm-3]

Solid 
Volume

[mL]
PEDOT:PSS 
solution

1 PEDOT:PSS 0.013 1.06a 0.01378

0.5M MgSO4 0.0648 MgSO4 1 x 10-4 2.66b 2.66 x 
10-4

EtOH 0.1408 - - - -

Total 1.2056 PEDOT:PSS/MgSO4 0.0131 - 0.01405

aProvided by the manufacturer; bDensity of MgSO4 acquired from literature. 1



Table S2. Porosity calculation of PU foam, porous PEDOT:PSS and upper limit estimation
Sample Bulk 

weight 
[g]

Bulk volume
[cm3]

Solid 
density
[g cm-3]

Bulk 
density
[g cm-3]

Solid 
Volume

[cm3]
Porosity

PU foam 0.0895 1.98 1.05b 0.0452 - 0.9570

porous 
PEDOT:PSS

0.0492 0.9604 1.06c 0.051226 - 0.9517

porous 
PEDOT:PSS 
with no 
shrinkage

- 1.2056a
(Vbulk ≈ Vtot)

- - 0.01405a 0.9883
(Estimated 

upper 
limit)

aValues acquired from Table S1; bDensity of polyurethane acquired from literature2; 
cProvided by the manufacturer. 



Table S3. Recent studies of porous TE carbon materials in comparison with this work
P-type TE N-type TE Thermal 

conductivity
[W m-1 K-1]

TE power 
density

[nW cm-2]
Thermal 
gradientb

[K]
Ref.

PEDOT:PSS/
ZnO 
composite

N/A 0.053 0.86 Forced 
gradient

ΔT = 50 K

3

SEBS-
PEDOT:PSS-
melamine 
foam

N/A ~ 0.066 16.1 Forced 
gradient

ΔT = 20 K

4

PEDOT-
TOS/SWCN
T aerogel

N/A ~ 0.145
(~0.09)a

3073 
(312)a

Forced 
gradient

ΔT = 50 K
(ΔT = 20 K)

5

CNT foam CNT foam 0.17 390.6 Stabilized 
gradient with 
fan cooling

ΔT = 13.9 K

6

CNT/PDMS 
foam

CNT/PDMS 
foam

0.13 494.8 Stabilized 
gradient with 
fan cooling

ΔT = 18.1 K

7

Mesoporous 
fibrillar 
PEDOT:PSS

N/A 0.065 251.0c Forced 
gradient

ΔT = 15.16 K

8

PEDOT:PSS 
aerogel

N/A 0.0526 90.2 Stabilized 
gradient

ΔT = 15.16 K
This work

aDetermined based on provided power plots at ΔT = 20 K; bForced gradient refers to a setup 
in which thermal source is directly applied on both sides, stabilized gradient refers to a setup 
in which thermal source is applied only to one side and thermal equilibrium was reached.; 
cDetermined based on provided power plots at ΔT = 15.16 K
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