Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Porous PEDOT:PSS Smart Thermal Insulators Enabling Energy Harvesting and Detecting

Jeong-Seob Yun, and Sang Hyuk Im*

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Republic of Korea. *Correspondence to : imromy@korea.ac.kr(S. H. I)

Figure S1. (A) Image of PEDOT:PSS/MgSO₄/EtOH mixture filled into polypropylene syringe being used as a mold for hydrogel formation. (B) Image of PEDOT:PSS hydrogel suspended inside solvent after complete cross-linking via heat treatment.

Figure S2. Image of PEDOT:PSS hydrogel retrieved after heat treatment which was formed inside (A) wide mouth cylindrical jar, and (B) 3ml polypropylene syringe.

Figure S3. Image of PEDOT:PSS solution after heat treatment. (A) Samples in which 10wt%, 20wt%, 30wt% EtOH was added (respectively, from left to right), without MgSO₄ addition. (B) Sample in which 10wt%, 20wt%, 30wt% EtOH was added (respectively, from left to right), where MgSO₄ was added as cross-linking agent.

Figure S4. (A) Voltage-temperature plot of a typical response cycle by heating and subsequent cooling of porous PEDOT:PSS. (B) Magnified voltage-time plot showing response time of porous PEDOT:PSS for temperature detection.

Component	Solution Volume [mL]	Solid component	Solid content [g]	Solid density [g cm ⁻⁵]	Solid Volume [mL]	
PEDOT:PSS solution	1	PEDOT:PSS	0.013	1.06 ^a	0.01378	
0.5M MgSO ₄	0.0648	$MgSO_4$	1 x 10 ⁻⁴	2.66 ^b	2.66 x 10 ⁻⁴	
EtOH	0.1408	-	-	-	-	
Total	1.2056	PEDOT:PSS/MgSO ₄	0.0131	-	0.01405	

Table S1. Component analysis of PEDOT:PSS/0.5M MgSO₄/EtOH viscous mixture

^aProvided by the manufacturer; ^bDensity of MgSO₄ acquired from literature. ¹

Sample	Bulk weight [g]	Bulk volume [cm ³]	Solid density [g cm ⁻⁵]	Bulk density [g cm ⁻⁵]	Solid Volume [cm ³]	Porosity
PU foam	0.0895	1.98	1.05 ^b	0.0452	-	0.9570
porous PEDOT:PSS	0.0492	0.9604	1.06°	0.051226	-	0.9517
porous PEDOT:PSS with no shrinkage	-	$\begin{array}{c} 1.2056^{a} \\ (V_{bulk} \approx V_{tot}) \end{array}$	-	-	0.01405ª	0.9883 (Estimated upper limit)

Table S2. Porosity calculation of PU foam, porous PEDOT:PSS and upper limit estimation

^aValues acquired from Table S1; ^bDensity of polyurethane acquired from literature²; ^cProvided by the manufacturer.

P-type TE	N-type TE	Thermal conductivity [W m ⁻¹ K ⁻¹]	TE power density [nW cm ⁻²]	Thermal gradient ^b [K]	Ref.
PEDOT:PSS/ ZnO composite	N/A	0.053	0.86	Forced gradient $\Delta T = 50 \text{ K}$	3
SEBS- PEDOT:PSS- melamine foam	N/A	~ 0.066	16.1	Forced gradient $\Delta T = 20 \text{ K}$	4
PEDOT- TOS/SWCN T aerogel	N/A	$\sim 0.145 \ (\sim 0.09)^a$	3073 (312) ^a	Forced gradient $\Delta T = 50 \text{ K}$ $(\Delta T = 20 \text{ K})$	5
CNT foam	CNT foam	0.17	390.6	Stabilized gradient with fan cooling $\Delta T = 13.9 \text{ K}$	6
CNT/PDMS foam	CNT/PDMS foam	0.13	494.8	Stabilized gradient with fan cooling $\Delta T = 18.1 \text{ K}$	7
Mesoporous fibrillar PEDOT:PSS	N/A	0.065	251.0°	Forced gradient $\Delta T = 15.16 \text{ K}$	8
PEDOT:PSS aerogel	N/A	0.0526	90.2	Stabilized gradient $\Delta T = 15.16 \text{ K}$	This work

Table S3. Recent studies of porous TE carbon materials in comparison with this work

^aDetermined based on provided power plots at $\Delta T = 20$ K; ^bForced gradient refers to a setup in which thermal source is directly applied on both sides, stabilized gradient refers to a setup in which thermal source is applied only to one side and thermal equilibrium was reached.; ^cDetermined based on provided power plots at $\Delta T = 15.16$ K

Supporting references

- 1. S. S. Chadwick, Ref. Serv. Rev., 1988, 16, 31-34.
- 2. D. W. Van Krevelen and K. Te Nijenhuis, *Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions*, Elsevier, 2009.
- 3. W. Lee, S. Lee, H. Kim and Y. Kim, *Chem. Eng. J.*, 2021, **415**, 128935.
- 4. J. Oh, J.-H. Kim, K. T. Park, K. Jo, J.-C. Lee, H. Kim and J. G. Son, *Nanoscale*, 2018, **10**, 18370-18377.
- 5. X. Wang, L. Liang, H. Lv, Y. Zhang and G. Chen, *Nano Energy*, 2021, **90**, 106577.
- 6. M.-H. Lee, Y. H. Kang, J. Kim, Y. K. Lee and S. Y. Cho, *Adv. Energy Mater.*, 2019, 9, 1900914.
- 7. Y. H. Kang, E. J. Bae, M.-H. Lee, M. Han, B. J. Kim and S. Y. Cho, *Small*, 2022, **18**, 2106108.
- 8. Q. Weinbach, S. V. Thakkar, A. Carvalho, G. Chaplais, J. Combet, D. Constantin, N. Stein, D. Collin and L. Biniek, *Front. Electron. Mater.*, 2022, **2**.