Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Origin of electrocatalytic nitrogen reduction activity over transition metal disulfides: critical role of *in situ* generation of S vacancy

Tianyi Wang¹, Zhongyuan Guo², Hirofumi Oka¹, Akichika Kumatani^{1,3,4,5,*}, Chuangwei Liu^{6,*}, and Hao Li^{1,*}

¹ Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan

² College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China

³ Institute of Engineering Innovation (IEI), School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan

⁴ Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

⁵ Graduate School of Environmental Studies & Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, Miyagi 980-8579, Japan

⁶ Key Lab for Anisotropy and Texture of Materials School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China

* Corresponding Authors

Email: kumatani@g.ecc.u-tokyo.ac.jp (A. K.)

Email: <u>liucw@mail.neu.edu.cn</u> (C. L.)

Email: li.hao.b8@tohoku.ac.jp (H. L.)

Figure S1 The grazing-incidence X-ray diffraction of FeS_2 .¹

Figure S2 The temperature and energy fluctuations of $\text{FeS}_{2-x}(111)$ -S_{1V} during 10 ps of *ab initio* molecular dynamics (AIMD) simulations.

Figure S3 The optimized configurations of the elementary steps on $\text{FeS}_2^{\circ}(f11)^{\circ}$ and $\text{FeS}_{2-x}(111)-1S_v$ *via* (a) the alternating and (b) distal pathways.

Figure S4 The transition state of $N_2^*+H^* \rightarrow NNH^*$ at the Fe site of FeS_{2-x}(111)-1S_V.

Figure S5 The energy profiles of ENRR over $FeS_{2-x}(111)-1S_V$ surfaces at the Fe active site *via* the (a) associative and (b) distal mechanism with and without solvation effects. The optimized NNH* with explicit water molecules is inserted. The Fe, S, N, O and H are indicated as brown, yellow, blue, red, and white, respectively.

Figure S6 The surface Pourbaix diagrams of occupied H_2O^* , HO^* , and O^* on the TMS_{2-X} surfaces.

Catalysts	NH ₃ yield	Faradic efficiency	Potential	Refs
		(%)	(V vs. RHE)	
FeS ₂ /MoS ₂ @rGO	41. 1 $\mu g h^{-1} m g_{cat}^{-1}$	38.6	-0.2	2
FeS ₂	$37.2 \mu g h^{-1} m g_{cat}^{-1}$	11.2	-0.5	3
FeS ₂ /rGO	27.9 $\mu g h^{-1} m g_{cat}^{-1}$	6.8	-0.3	4
Sv-FeS ₂	11.5 $\mu g h^{-1} m g_{cat}^{-1}$	14.6	-0.2	5
MoS ₂ -FeS ₂ /Fe foam	$7.1 \times 10^{-10} mol s^{-1} cm^{-2}$	4.6	-0.5	6
Mo-FeS ₂	25.15 $\mu g h^{-1} m g_{cat}^{-1}$	14.4	-0.2	7
Sn-FeS ₂	$15.8 \text{ mg h}^{-1} \text{ cm}^{-2}$	96.7	-0.5	8

Table S1 The highest NH_3 yield, highest Faradic efficiency, and the located potential of FeS₂-based catalysts *via* experimental studies.

Table S2 The calculated surface energies of different FeS_2 facets.

Facet	E^{unr}	E ^{real}	a	b	Surface energy (J/m^2)	
	(eV)	(eV)	(Å)	(Å)	unrelaxed	relaxed
111	-180.26	-181.54	10.93	7.00	1.17	1.03
200	-88.48	-89.27	4.44	5.41	2.40	2.14
210	-174.47	-176.80	10.93	7.00	1.77	1.53
211	-173.57	-176.36	10.93	7.00	1.86	1.57
311	-169.66	-172.44	10.93	7.00	2.27	1.98

Reaction step	Free energy (eV)
$N_2^* + H^* \rightarrow NNH^*$	1.02
$NH_2^* + H^* \rightarrow NH_3^*$	-0.51
$NH_3^* \rightarrow NH_3(g)$	0.84

Table S3 The free energies of NNH* formation, NH_3^* formation, and NH_3^* desorption on FeS_{2-x} .

Table S4. The adsorption free energies of N_2 and NH_3 on $FeS_{2\text{-}x}$ surface.

Species	N ₂	NH ₃
Adsorption free energy (eV)	-1.00	-0.51

Table S5 The energy barrier of N_2 adsorption and NNH* formation over $FeS_{2-x}(111)-1S_V$ surfaces at Fe

active site with and without U correction.

	ΔG-DFT (eV)	ΔG -DFT+U (eV)
+N ₂ →NN	-1.00	-1.06
NN*+H*→NNH*	1.02	1.11

Catalysts	NH ₃ yield	Faradic efficiency	Potential	Refs
		(%)	(V vs. RHE)	
B-VS ₂	55.7 $\mu g h^{-1} m g_{cat}^{-1}$	16.4	-0.4	9
Mo-SnS ₂	41.3 $\mu g h^{-1} m g_{cat}^{-1}$	20.8	-0.4	10
V-NiS ₂	47.63 $\mu g h^{-1} m g_{cat}^{-1}$	9.37	-0.35	11
Sv-MoS ₂	29.28 $\mu g h^{-1} m g_{cat}^{-1}$	8.34	-0.4	12
MoS ₂ -PDR	$43.4 \pm 3 \mu g h^{-1} m g_{cat}^{-1}$	16.8 ± 2	-0.3	13
Sv-MoS ₂	23.38 $\mu g h^{-1} m g_{cat}^{-1}$	17.9	-0.35	14
Li-S/MoS ₂	43.4 $\mu g h^{-1} m g_{cat}^{-1}$	9.81	-0.2	15
MoS_2/C_3N_4	18.5 $\mu g h^{-1} m g_{cat}^{-1}$	17.5	-0.3	16
Sn-SnS ₂	23.8 $\mu g h^{-1} m g_{cat}^{-1}$	6.5	-0.7	17
MoS ₂ -rGO	24.82 $\mu g h^{-1} m g_{cat}^{-1}$	4.56	-0.45	18
MoS ₂ /CN	$36.1 \mu g h^{-1} m g_{cat}^{-1}$	15.2	-0.5	19
Fe-MoS ₂	$20.11 \mu g h^{-1} m g_{cat}^{-1}$	15.72	-0.35	20
FL-VS ₂	34.62 $\mu g h^{-1} m g_{cat}^{-1}$	2.09	-0.6	21

Table S6 The highest NH_3 yield, highest Faradic efficiency, and the located potential of TMS_2 -based catalysts *via* experimental studies.

Table S7 Formation free energies of the occupying species on FeS_{2-x} at -0.2 V_{RHE} .

Species	H ₂ O*	HO*	0*	N ₂ *
Formation free energy (eV)	0.55	0.93	2.09	-1.00

Note: The reason for choosing -0.2 V_{RHE} for analysis is because previous works demonstrated that FeS₂ can achieve a high Faradaic efficiency at around -0.2 V_{RHE} .⁵ The formation free energy (ΔE_{form}) of occupied species on FeS_{2-x} surface was calculated *via* Eq. (1):

$$\Delta E_{form} = E_{H_m0*} + (2-m)*(0.5*E_{H2} - U_{SHE} - 2.303*k*T*pH) - E_{FeS_{2-x}} - E_{H20}$$
(1)

where m is the number of H of occupied species (H₂O*, HO*, and O*). E_{H2O} , E_{H2} , E_{FeS_2-x} , and E_{HmO*} are the energies of H_2O molecule, H_2 molecule, FeS_{2-x} surface, and FeS_{2-x} surfaces with adsorbed species, respectively. U_{SHE} , k_B , and T are the potential under the scale of standard hydrogen electrode (SHE), the Boltzmann constant, and temperature, respectively.

Reference

- S. Kment, H. Kmentova, A. Sarkar, R. J. Soukup, N. J. Ianno, D. Sekora, J. Olejnicek, P. Ksirova, J. Krysa, Z. Remes and Z. Hubicka, *J. Alloy. Compd.*, 2014, 607, 169-176.
- Z. Feng, G. Li, X. Wang, C. J. Gómez-García, J. Xin, H. Ma, H. Pang and K. Gao, *Chem. Eng. J.*, 2022, 445, 136797.
- 3. H. Du, C. Yang, W. Pu, L. Zeng and J. Gong, ACS Sustain. Chem. Eng., 2020, 8, 10572-10580.
- 4. L. Gao, C. Guo, M. Zhao, H. Yang, X. Ma, C. Liu, X. Liu, X. Sun and Q. Wei, *ACS Appl. Mater. Interfaces*, 2021, **13**, 50027-50036.
- 5. D. Feng, X. Zhang, Y. Sun and T. Ma, *Nano Mater. Sci.*, 2020, **2**, 132-139.
- 6. M. Yang, Z. Jin, C. Wang, X. Cao, X. Wang, H. Ma, H. Pang, L. Tan and G. Yang, ACS Appl. Mater. Interfaces, 2021, 13, 55040-55050.
- H. B. Wang, J. Q. Wang, R. Zhang, C. Q. Cheng, K. W. Qiu, Y. J. Yang, J. Mao, H. Liu, M. Du, C. K. Dong and X. W. Du, *ACS Catal.*, 2020, 10, 4914-4921.
- 8. G. Zhang, F. Wang, K. Chen, J. Kang and K. Chu, Adv. Funct. Mater., 2023, 2305372.
- 9. Q. Li, Y. Guo, Y. Tian, W. Liu and K. Chu, J. Mater. Chem. A, 2020, 8, 16195-16202.
- 10. K. Chu, J. Wang, Y. P. Liu, Q. Q. Li and Y. L. Guo, J. Mater. Chem. A, 2020, 8, 7117-7124.
- M. Zhao, C. Guo, L. Gao, X. Kuang, H. Yang, X. Ma, C. Liu, X. Liu, X. Sun and Q. Wei, *Inorg. Chem. Front.*, 2021, 8, 3266-3272.
- X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Energy Mater.*, 2018, 8, 1801357.
- W. Liao, K. Xie, L. Liu, X. Wang, Y. Luo, S. Liang, F. Liu, and L. Jiang, *J. Energy Chem.*, 2021, 62, 359-366.
- M. You, S. Yi, X. Hou, Z. Wang, H. Ji, L. Zhang, Y. Wang, Z. Zhang and D. Chen, *J. Colloid. Interface Sci.*, 2021, **599**, 849-856.
- Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang and H. Zhao, *Adv. Energy Mater.*, 2019, 9, 1803935.
- K. Chu, Y. P. Liu, Y. B. Li, Y. L. Guo and Y. Tian, T., ACS Appl. Mater. Interfaces, 2020, 12, 7081-7090.
- P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang, A. B. Watson, P. Dong, J. Shen and M. Ye, *Small*, 2019, 15, e1902535.
- X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei and D. Wu, *J. Mater. Chem.* A, 2019, 7, 2524-2528.

- 19. X. W. Lv, X. L. Liu, Y. J. Suo, Y. P. Liu and Z. Y. Yuan, ACS Nano, 2021, 15, 12109-12118.
- 20. L. Niu, D. Wang, K. Xu, W. Hao, L. An, Z. Kang and Z. Sun, *Nano Res.*, 2021, 14, 4093-4099.
- L. Zhao, R. Zhao, Y. Zhou, X. Wang, X. Chi, Y. Xiong, C. Li, Y. Zhao, H. Wang, Z. Yang and Y. M. Yan, *J. Mater. Chem. A*, 2021, 9, 24985-24992.