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Synthesis of PhFSI and the structural identification of the PhFSI
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The (fluorosulfonyl)(phenyl)sulfamoyl fluoride (PhFSI) was synthesized basically according to
Dong’s method !. We substituted the acetonitrile to DMC which is a green solvent and also a part of
electrolytes. To a solution of aniline in DMC stirred at 0 °C, 1-(fluorosulfonyl)-2,3-dimethyl-1H-
imidazol-3-ium trifluoromethanesulfonate was added directly and the solution became faint yellow with
insoluble floating salts. After stirring for 10 minutes, triethylamine was added slowly drop by drop to
trigger the reaction as shown by gradually dissolved salts and deeper yellow color. Then the reaction
system was transferred to room temperature and stirred for 1 hour to finish reaction. The mixture was
extracted with water for 3 times and aqueous layer was extracted for 1 time. The combined organic layer
was dried with anhydrous sodium sulfate and the purification were achieved through silica gel
chromatography to afford PhFSI as colorless crystals (yield: 80%), Ry (hexane) 0.8. The molecular
structure of PhFSI was identified by 'H, '*C and '°F NMR spectrum using ACN-d3 as solvent and the
purity was 99.98% measured by gas chromatography (GC, Agilent 7890A).

The '"H NMR spectrum of the PhFSI
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'H NMR (400 MHz, CD;CN) § 7.72-7.62 (m, 5 H)

The 3C NMR spectrum of the PhFSI
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Gas chromatography (GC) analysis results of the N-Phenylimidodisulfuryl fluoride
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Fitting values of the EIS spectra of the NCM523/Graphite cells
Samples Blank PhFSI Blank  PhFSI Blank PhFSI
R (mQ) I8t 200t 500t
Ry 38.86  36.93 42.07 37.23 69.09 46.75
R¢ 8.10 7.58 4.98 5.05 17.38 5.45
R 14.02 10.15 31.25 17.62 87.22 65.72
Tab. S1 The fitted Ry, Ry and R, value at 1%, 200t and 500 cycle of NCM523/Graphite pouch cells cycled at 1 C
at 25 °C.
Samples Blank PhFSI Blank PhFSI
R (mQ) 1st 400t
Ry 39.73 37.12 81.69 46.73
Ry 8.25 7.43 22.8 9.54
R 14.13 10.32 57.82 39.68
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Tab. S2 The fitted Ry, Ry and R, value at 15 and 400" cycle of NCM523/Graphite pouch cells cycled at
1 Cat45°C.
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Cycling performances of NCM523/Graphite cells with various concentrations of

PhFSI and the EIS spectra before cycling
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Fig. S1 (a) The EIS spectra of the NCM523/Graphite pouch cells with the Blank and different concentrations of
PhFSI before cycling and (b) their cycling performances at 1 C at 25 °C.
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Supplement data for NCM523/Graphite cells cycling at 45 °C.
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Fig. S2 (a) The cycling performances of NCM523/Graphite with/without PhFSI at 1 C under 45 °C. The charge-
discharge curves of the batteries (b) with the Blank and (c) 1% PhFSI at 1, 150, 300t 350t cycle. (d) The EIS
spectra before and after cycling at 45 °C and (e) corresponding fitted Ry, Ry, R, values.
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Performances of NCMS523/Graphite pouch cells with/without PhFSI storing at 60

o]
C for 7 days
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Fig. S3 The (a) discharge curves, (b) EIS spectra and (c) relevant capacity retention/recovery of the
NCMS523/Graphite pouch cells with/without PhFSI after storing at 60 °C for 7 days.
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Supplement data for NCM523/Graphite cells cycling at -20 °C.
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Fig. S4 (a) The discharge curves of NCM523/Graphite with/without PhFSI discharged at 0.2, 0.5, and 1
C under -20 °C. (b) The capacity retention of batteries discharged at -20 °C. (c) DCR values measured
at -20 °C.
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Cycling performances of NCM811/Graphite cells with/without PhFSI and the EIS

spectra during cycling
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Fig. S5 (a) The cycling performances and (b) the EIS spectra of the NCM811/Graphite pouch cells with/without 1%
PhFSI cycling at 1 C at 25 °C.
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Pictures of the cathodes and anodes before and after cycling at 25 °C

Fig. S6 Pictures of (a) the NCM523 cathode and (b) the graphite anode of the pristine, cycled with the Blank and
PhFSI.
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Cross-sectional image of the NCM523 in the blank and raman results of the

coverage on the anode with the Blank
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Fig. S7 (a) The anode observation of the Blank under confocal micro-raman spectrometer and (b) the corresponding

results. (¢) The cross-sectional image of the Blank NCM523.
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XPS spectra of the Ni and Mn analysis on the cathodes and anodes with/without

PhFSI.
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Fig. S8 The XPS spectra of the Ni 2p and Mn 2p of the (a) NCM523 cathodes and (b) Graphite anodes.
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Contact angles and viscosity of the electrolyte with/without PhFSI.
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Fig. S9 The contact angles of the electrolyte (a) without (b) with 1% PhFSI measured at 25 °C and (c) vicosity of
electrolytes with/without PhFSI at 25 °C.
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Calculations of AIE and EA energies as well as binding energy between Li+ and

electrolyte components.
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Fig. S10 The optimized structures of the EC, EMC and PhFSI in neutral, obtaining and losing one electron state with
resultant AIE, EA as well as (c) the biding energy of electrolyte components with Li* (kJ mol ).

As seen in the Fig. S10a, PhFSI exhibited lowest AIE and EA compared to EC and EMC, indicating PhFSI is easier
to lose/receive electron and decompose preferentially. Moreover, the negative binding energiy between PhFSI and
Li+ is lower than those of with carbonates, i.e. PhFSI-Li* -4.05 KJ mol'!, EMC-Li" -29.41 KJ mol-!, EC-Li* -35.31
KJ mol-!. Therefore, PhFSI is poor to coordinate in the inner Li* solvation sheath. indicating that PhFSI is more

prone to decompose on the electrode as well.2
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CV spectra of the NCM/Li and Graphite/Li
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Fig. S11 (a) The magnified area and (b, c¢) 3 cycles scanning of the CV graph of the NCM523/Li. The 3 cycles
scanning of the CV graphs of the Graphite/Li (d) without and (e) with PhFSI
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LSV results of the electrolyte with/without PhFSI and their "’F NMR analysis
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Fig. S12 (a) The LSV curves of the electrolyte with/without PhFSI scanned from OCV to 7 V. 1F NMR results of
the post-LSV electrolyte (b) with the Blank and (c) with the PhFSI..

S18



Cycling performances of Graphite/Li with/without PhFSI
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Fig. S13 (a) The cycling performance of the Graphite/Li with and without PhFSI started at 0.1 C (1C =372 mAh/g)

for 3 cycles with following cycling at 0.5 C at 25 °C. (b) The coulombic efficiencies during the cycling. (¢) The

initial charge-discharge curve at 0.1 C. (d) The EIS spectra of the Graphite/Li cells after formation of cycling at 0.1

C for 3 cycles.
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The Possible electrochemical decomposition mechanism of PhFSI additive
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Fig. S14 (a) The optimized structures of the PhFSI with bond length at neutral state and after gaining/losing one

electron. (b) The functional mechanism illustration of the PhFSI on the cathode and the anode.

To figure out the mechanism of PhFSI additive molecular, the structures of the
PhFSI at neutral, after acquiring and losing one electron states were optimized though
DFT calculations, as shown in Fig. S14. On the cathode, the oxidation is considered to
start with the leaving of two -SO,F groups after losing electrons, suggested by the
longer S-N bond lengths in comparison with neutral state. When gaining one electron
on the anode, only one -SO,F group exhibits obvious leaving trend with one remaining
on the additive molecule, which is supposed to leave in the following reduction process
as well. The resultant -SO,F group will further undergo reaction with EC and Li*, and
eventually generate the resultant LiF, Li sulfite/sulfate/sulfide. C-N bond lengths even
shrink after PHFSI undergoes oxidation and reduction, which may attribute to the
stabilization of the conjugation effect and explain the existence of species with C-N
bond in Fig. 3. Based on the XPS as well as DFT calculations, the functional mechanism
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of PhFSI was proposed in detail as shown in Fig. S14b.
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