Supplementary Information

Unveiling Ligand-Mediated Phase Engineering Mechanism in Two-Dimensional Transition Metal Chalcogenides through Coordination Geometry Control

Sungju Jun,^[1] Joo-Won Lee,^[1] Sung-Chul Kim,^[2] Soong Ju Oh,^[3] and Sohee Jeong*^[1]

[1] Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea

[2] Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea

[3] Department of Materials Science and Engineering, Korea University, Seoul 02841, South Korea

Experimental section

Chemical

Tungsten hexacarbonyl (W(CO)₆, 97%, Sigma-Aldrich), trioctylphosphine oxide (TOPO, technical grade, 90%, Sigma-Aldrich), hexadecylamine (HDAm, technical grade, 90%, Sigma-Aldrich), triphenylphosphine oxide (TPPO, 98%, Sigma-Aldrich), selenium (Se, 99.99% trace metals basis, Sigma-Aldrich), sulfur (S, 99.98% trace metal basis, Sigma-Aldrich), toluene (>99.8%, SAMCHUN pure chemical), acetone (99.7%, SAMCHUN pure chemical), and ethanol (99.9%, SAMCHUN pure chemical) were used as received without further purification. Oleylamine (OLAm, technical grade, 70%, Sigma-Aldrich), and 1-octadecene (ODE, technical grade, 90%, Sigma-Aldrich) were used after purification.

Synthesis of 1T'-WSe₂ nanosheets

For the synthesis of 1T'-WSe₂:TOPO, 1.0 mmol of W(CO)₆, 1.6 mmol of Se, 20 mmol of TOPO, and 20 mL of ODE were loaded in a 3-neck flask. The mixture was heated up to 330 °C for 40 min under Ar protection and kept for 2 h. The reaction pot was quenched using acetone to room temperature. 1T'-WSe₂ nanosheets were collected by centrifugation at 7,000 rpm with acetone and washed several time with toluene and ethanol. Finally, 1T'-WSe₂ nanosheets were dried and stored in glove box. In the case of 1T'-WSe₂:TPPO, the same synthetic procedure was adopted except the introduction of TPPO (20 mmol) for replacing TOPO.

Synthesis of 2H-WSe₂ nanosheets

The synthesis of 2H-WSe₂ nanosheets was conducted via the same process as for 1T'-WSe₂:TOPO except that TOPO was replaced by the ligands (80 mmol of OLAm for 2H:WSe₂:OLAm and 80 mmol of HDAm for 2H:WSe₂:HDAm).

Synthesis of 1T-WS₂ and 2H-WS₂ nanosheets

The synthesis of 1T-WS₂:TOPO and 2H-WS₂:OLAm was performed via the same methods for 1T'-WSe₂:TOPO and 2H-WSe₂:OLAm, respectively, except that Se was replaced by S (1.6 mmol).

Synthesis of W precursor complexes (W(CO)₆:OLAm-T and W(CO)₆:TOPO-T)

 $W(CO)_6$ and OLAm were added to a 3-neck flask with the molar ratio of 1:8. The mixture was heated up to the target temperatures (T = 50, 100, 150, 200 °C). For the synthesis of $W(CO)_6$:TOPO-T, $W(CO)_6$ and TOPO were reacted instead of OLAm at the same temperatures.

Selenization of W(CO)₆:OLAm-200 and W(CO)₆:TOPO-200

For the selenization process, a Se solution was injected to each flask containing $W(CO)_6$:OLAm-200 and $W(CO)_6$:TOPO-200, respectively, where a Se solution was prepared by dissolving Se powders in ODE under Ar protection. The selenization process was conducted at 330 °C and maintained for from 10 to 60 min.

XANES measurement

W L₁-edge XANES measurements were conducted at the 1D KIST-PAL beamline in Pohang Accelerator Laboratory (PAL). W L₁ pre-edges and rising edges were fitted using the Athena program.

Electrochemical measurement

For preparing catalyst inks, 10 mg of 2H-WSe₂:OLAm and 1T'-WSe₂:TOPO, respectively, 60 μ L of Nafion-117, and 1 ml of ethanol were mixed together. Each catalyst ink was dropped onto glassy carbon electrode (GCE) with the 3 mm diameter to be a catalyst loading of 0.65 mg/cm². Linear sweep voltammetry was carried out to obtain polarization curves of 2H-WSe₂:OLAm and 1T'-WSe₂:TOPO in a Ar-saturated 0.5 M H₂SO₄ solution with a scan rate of 10 mV/s using a graphite electrode as the counter electrode and a saturated calomel (Hg/HgCl₂

in saturated KCI) as the reference electrode. To obtain double-layer capacitances of 2H-WSe₂:OLAm and 1T'-WSe₂:TOPO, cyclic voltammetry measurements were conducted at different scan rates from 20 mV/s to 120 mV/s. The chronopotentiometry result of 1T'-WSe₂:TOPO was collected at the current density of -10 mA/cm² for exploring the long-term durability.

Characterization

Atomic arrangements were investigated by transmission electron microscopy (TEM) and highangle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Powder X-ray diffraction (PXRD) patterns were measured using an Empyrean diffractometer (Malvern Panalytical) equipped with a Cu K-alpha radiation source. Raman spectra were recorded by a confocal Raman microscope (inVia Reflex, Renishaw) with the laser excitation wavelength of 532 nm. X-ray pair distribution function (XPDF) measurements were conducted using a PANalytical Empyrean multipurpose diffractometer equipped with Ag anode ($\lambda = 0.5609$ Å), a focusing mirror and a GaliPIX3D detector with CdTe sensor. Fourier transform infrared (FTIR) transmittance were obtained using a Nicolet iS50 FTIR spectrometer (Thermo Fisher Scientific). X-ray photoelectron spectroscopy (XPS) results were obtained using PHI 5000 VersaProbe instrument to investigate the chemical states.

Figure S1. TEM images of (a) 2H-WSe₂:OLAm and (b) 1T'-WSe₂:TOPO.

Figure S2. Side-view HAADF-STEM images of (a) 2H-WSe₂:OLAm and (b) 1T'-WSe₂:TOPO, showing their interlayer distances.

Figure S3. STEM intensity profile along the monolayer and bilayer region of 2H-WSe₂:OLAm in Figure 1b. The intensity profile reflects the atomic sequences of monolayer 2H-WSe₂ (W and Se–Se) and bilayer 2H-WSe₂ (W–Se–Se) along the *c*-direction.

Figure S4. Schematic structure of 1T'-WSe₂ with (200) and (40-2) crystallographic planes highlighted.

Figure S5. High-resolution XPS spectra of 2H-WSe₂:OLAm and 1T'-WSe₂:TOPO at the core level of (a) W 4f and (b) Se 3d.

2H–WSe ₂		1T'-WSe ₂		
Atomic pair	Distance	Atomic pair	Distance	
W–Se(1) (nearest pair)	2.526 Å	W–Se(1) (nearest pair)	2.493 Å	
			2.493 Å	
			2.514 Å	
			2.583 Å	
			2.583 Å	
			2.609 Å	
W–W	3.282 Å	W–W _{sh}	2.777 Å	
		W–W _b	3.265 Å	
		W–W _{el}	3.979 Å	
W–Se(2)	4.141 Å	W–Se(2)	3.825 Å	
			4.121 Å	
			4.180 Å	

Table S1. Calculated atomic-pair distances of 2H-WSe₂ and 1T'-WSe₂.

Figure S6. (a) XRD patterns and (b) Raman spectra of freshly prepared 1T'-WSe₂:TOPO and 1T'-WSe₂:TOPO that have been stored in ambient condition for 7 and 60 days (1T'-WSe₂-7days and 1T'-WSe₂-60days, respectively).

Figure S7. PXRD pattern of 2H-WSe₂ nanosheets grown by hexadecylamine (2H-WSe₂:HDAm).

Figure S8. Raman spectrum of 2H-WSe₂:HDAm.

Figure S9. PXRD pattern of 1T'-WSe₂ nanosheets grown by triphenylphosphine oxide (1T'-WSe₂:TPPO).

Figure S10. Raman spectrum of 1T'-WSe₂:TPPO.

Figure S11. FTIR transmittance spectrum of pristine W(CO)₆, exhibiting C=O stretching signals.

Figure S12. High-resolution W 4f XPS spectra of W(CO)₆:OLAm-200 and W(CO)₆:TOPO-200.

Figure S13. Schematic illustration describing a pre-edge absorption mechanism in six-coordinate W complexes.

Figure S14. XANES spectrum of pristine $W(CO)_6$ at the W L₁-edge, fitted with the rising edge.

Figure S15. Fitted XANES spectrum of W(CO)₆:HDAm-200 at the W L₁-edge.

Figure S16. Fitted XANES spectrum of W(CO)₆:TPPO-200 at the W L₁-edge.

Figure S17. Tetrahedral molecular geometry of -NH₂(C) in OLAm and -CH₃ in W(CH₃)₆.

Figure S18. Top-view HAADF-STEM and inverse FFT images of (a,b) 2H-WS₂:OLAm and (c,d) 1T-WS₂:TOPO. (e) Schematic structures showing the top-view atomic arrangement and W coordination geometry in 1T-WS₂ and 2H-WS₂.

Figure S19. PXRD patterns of 2H-WS₂:OLAm and 1T-WS₂:TOPO.

Figure S20. Cyclic voltammetry measurements of (a) 2H-WSe₂:OLAm and (b) 1T'-WSe₂:TOPO with varying scan rates.

Figure S21. HER polarization curves of 2H-WS₂:OLAm and 1T-WS₂:TOPO.

Figure S22. Raman spectrum of the 1T'-WSe₂:TOPO catalyst before and after HER long-term stability measurement.

Figure S23. TEM image of the 1T'-WSe2:TOPO catalyst after long-term stability measurement.

Figure S24. HER polarization curves of 1T'-WSe2:TOPO, 1T'-WSe2-7days, and 1T'-WSe2-60days.

Ref.	Catalyst	Overpotential (mV)	Tafel slope (mV/dec)	Stability
1	Exfoliated 1T-WS ₂	250	60	120 h
2	2M phase WSe ₂	104	71	120 h
3	WS2 nanoribbons	240	68	-
4	WS_2 on $W_{18}O_{49}$ nanotubes	210	122	-
5	1T-WSe ₂ on substrate by heating up method	197	143	-
6	Colloidal WSe ₂ nanosheets	140	101	18 h
7	$W_{0.8}Nb_{0.2}Se_2$	125	69	144 h
8	1T'-WSe ₂ nano- monolayers	232	59	-
9	SLHS-1T-WS ₂	153	46	36 h
	SLHS-1T-WSe ₂	211	58	-
10	Colloidal 1T-WS ₂	200	50	120 h
11	Layered WS ₂	184	79	-
12	1 T-WS $_2$ monolayer	185	100	-
13	WSe ₂ nanostructure	259	105	3000 CV cycles
This work	1T'-WSe ₂ :TOPO	210	115	180 h

Table S2 HER performances of WCh_2 catalysts in the literatures.

References

- 1 D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, Nat. Mater., 2013, **12**, 850-855.
- I. S. Kwon, I. H. Kwak, J. Y. Kim, S. J. Lee, Q. A. Sial, J. Ihsan, K.-S. Lee, S. J.
 Yoo, J. Park and H. S. Kang, Adv. Mater., 2023, 2307867.
- 3 J. Lin, Z. Peng, G. Wang, D. Zakhidov, E. Larios, M. J. Yacaman and J. M. Tour, Adv. Energy Mater., 2014, 4, 1301875.
- 4 X. Shi, M. Fields, J. Park, J. M. McEnaney, H. Yan, Y. Zhang, C. Tsai, T. F. Jaramillo, R. Sinclair, J. K. Nørskov and X. Zheng, *Energy Environ. Sci.*, 2018, 11, 2270-2277.
- 5 Y. J. Park, H. S. So, H. Hwang, D. S. Jeong, H. J. Lee, L. Lim, C. G. Kim and H.
 S. Shin, *ACS Nano*, 2022, 16, 11059-11065.
- 6 W. Zhang, X. Liu, T. Liu, T. Chen, X. Shen, T. Ding, L. Cao, L. Wang, Q. Luo and T. Yao, J. Phys. Chem. C, 2021, 125, 6229-6236.
- 7 I. H. Kwak, I. S. Kwon, J. Y. Kim, G. M. Zewdie, S. J. Lee, S. J. Yoo, J.-G. Kim,
 J. Park and H. S. Kang, *ACS Nano*, 2022, 16, 13949-13958.
- Z. Liu, K. Nie, X. Qu, X. Li, B. Li, Y. Yuan, S. Chong, P. Liu, Y. Li, Z. Yin and
 W. Huang, J. Am. Chem. Soc., 2022, 144, 4863.
- 9 B. Li, K. Nie, Y. Zhang, L. Yi, Y. Yuan, S. Chong, Z. Liu and W. Huang, Adv. Mater., 2023, 35, 2303285.
- 10 Z. Liu, N. Li, C. Su, H. Zhao, L. Xu, Z. Yin, Li. J and Y. Du, *Nano Energy*, 2018, 50, 176-181.

- M. M. Alsabban, S. Min, M. N. Hedhili, J. Ming, L.-J. Li and K.-W. Huang, ECS
 J. Solid State Sci. Technol., 2016, 5, Q3067-Q3071.
- 12 A. Han, X. Zhou, X. Wang, S. Liu, Q. Xiong, Q. Zhang, L. Gu, Z. Zhuang, W. Zhang, F. Li, D. Wang, L. J. Li and Y. Li, *Nat. Commun.*, 2021, **12**, 709.
- 13 S. R. Kadam, A. N. Enyashin, L. Houben, R. Bar-Ziv and M. Bar-Sadan, J. Mater. Chem. A, 2020, 8, 1403-1416.