Supporting Information for:

Bioinspired superhydrophobic polylactic acid aerogel with tree branch structure for the removal of viscous oil spills assisted by solar energy

Yihao Guan^{a, b,d}, Bingqian Bi^{a, b}, Di Qiao^{a, b}, Sijing Cao^{a, b}, Wenjun Zhang^{a, b},

Zhining Wang ^c, Hongbo Zeng ^d, Yiming Li^{a, b, *}

^a Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of

Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China,

266100, Qingdao, P.R. China

^b College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100,

P.R. China

^c Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P.R. China ^d Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta

T6G 1H9, Canada

^{*} Corresponding author.

E-mail address: <u>liym@ouc.edu.cn</u> (Y.M. Li)

Fig. S1 SEM images of PLA aerogel prepared from different PLA concentrations (a) 10 %, (b) 20 %, (c) 30 %, and (d) 40 %.

Fig. S2 XRD spectrum of PLA and G-PLA aerogel.

Fig. S3 Raman spectrum of PLA and G-PLA aerogel.

Fig. S4 Shape recovery of the (a) 10 % PLA, (b) 20 % PLA, (c) 30 %PLA, and (d) 40 % PLA aerogel after being compressed by a weight of 100 g.

Fig. S5 Shape recovery of the G-PLA aerogel after being compressed by a weight of 100 g, and the graphene content are (a) 2 % and (b) 6 %, respectively.

Fig. S6 G-PLA aerogel bending, twisting, and stretching test.

Fig. S7 Tensile properties of (a) PLA aerogel, and (b) G-PLA aerogel.

Fig. S8 TGA diagrams and DTG analysis of G-PLA aerogel.

Fig. S9 The crude oil absorption of G-PLA aerogel immersing in pH 3, and pH 11 solutions after 7 and 14 days.

Fig. S10 Photographs of PLA (left) and G-PLA (right) aerogel in diesel/water mixture.

Fig. S11 Photographs of G-PLA aerogel for a mixture of water and diesel (a), kerosene (b), and CCl₄ (c), respectively.

Fig. S12 Cycles separation efficiency of G-PLA aerogel for a mixture of water and diesel, kerosene, and CCl₄, respectively.

Fig. S13 Separation flux of G-PLA aerogel for a mixture of water and diesel, kerosene, and CCl₄, respectively.

Fig. S14 Absorption capacity of the G-PLA aerogel for various oils or organic solvents.

Fig. S15 Absorption rate of the G-PLA aerogel for various oils or organic solvents with different viscosities.

Fig. S16 Photographs showing (a) removal of diesel from the water surface and (b) trichloromethane underwater by the G-PLA aerogel.

PS: Pore structure CH: Climbing height (mm) OV: Oil viscosity (mPa s)

Fig. 17 Successive optical images showing distinct absorbing rate of oils with different viscosities inside the different porous structures: (a₁) random pores and (a₂) aligned channels of PLA aerogel, (a₃) random pores and (a₄- a₇) aligned channels of G-PLA aerogel.

Fig. S18 IR images of G-PLA aerogel under simulated sunlight irradiation (kW m⁻²) of 0, 0.5, 1.0, 1.5, and 2.0 from left to right.

Fig. S19 Photographs showing the sinking behavior of G-PLA aerogel in different types of oils under no sunlight.

Fig. S20 The variance of crude oil viscosity with temperature.

Fig. S21 Photographs showing the sinking behavior of G-PLA aerogel in the absence of sunlight irradiation.

Fig. S22 The optical photos and corresponding infrared thermal imaging of G-PLA aerogel in absorbing crude oil on the sea surface at (a, b) laboratory (1 kW m⁻² light intensity), and (c) outdoors (13:00).

Fig. S23 The optical photos and corresponding infrared thermal imaging of G-PLA aerogel in absorbing crude oil on the sea surface, and the seawater collected in Qingdao Shilaoren Beach.

Table S1: Parameters of different types of oils

	Density (kg m ⁻³)	Viscosity (mPa s)	Surface tension (mN m ⁻¹)
Tetradecane	0.76	5	26.5
Liquid paraffin	0.88	17	25.6
Soybean oil	0.92	32	35.2
Engine oil	0.95	83	34.6