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Figure S1. Additional zoomed-in SEM images of g-C3N4 precursor (a), dendritic templated
N-doped carbon (b), flake templated N-doped carbon (c¢), and spheroidal templated N-doped
carbon (d).
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Figure S2. SEM images of population of dendritic copper (a), spheroidal copper (b), flake
copper (¢), dendritic-copper templated N-doped carbons (d), spheroidal-copper templated N-
doped carbons (e), and flake-copper templated N-doped carbons (f).
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For analysis of the XRD patterns:

The d-spacing (d) was determined by using the Bragg equation:
2d sin@ = nA

where:

n is a positive integer

A is the x-ray wavelength (1.5418 A)

0 is the Bragg angle in radians

The crystallite size (Lc and La) was determined by using the Scherrer equation:

- KA
" BcosB

where:

L is the average crystallite size

A is the x-ray wavelength (1.5418 A)

K is the shape parameter (0.89 for L. and 1.84 for La)
p is the FWHM in radians

0 is the Bragg angle in radians
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Table S1. Estimated Crystallite Parameters of N-Doped Carbons from XRD

e LB de® ORI Lk e
Dendritic 11.14 3.36 3.31 8.71 4.29 2.03
Spheroidal 10.13 3.40 2.97 6.98 4.26 1.64
Flake 10.76 341 3.15 6.45 4.19 1.54
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Figure S3. Example of Raman spectra fitting to determine the Ip/Ig ratio. Spectra were fit

with four peaks representing the D*, D, D™, and G band.

Table S2. Raman Fitting Parameters for N-Doped Carbons

Sample D* D D** G L1
Dendritic  1254.6cm” 1379.1cem 15200 cm 1600.8 cm” 1.19
Spheroidal ~ 1219.6cm”  1365.5cm” 1501.6cm 1588.6cm’ 1.19
Flake 1241.1ecm” 13661 cm” 15058 cm 15919 cm’ 1.20
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Figure S4. XPS survey scans of dendritic (a) spheroidal (b) and flake(¢) templated carbons.

Table S3. XPS Elemental Composition of N-Doped Carbons

Sample % Carbon % Nitrogen % Oxygen % Copper
Dendritic 62.6 31.2 4.9 1.4
Spheroidal 62.9 30.2 5.8 1.2
Flake 63.7 31.0 5.1 0.3
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scans of dendritic (a) spheroidal (b) and flake(c) templated

Table S4. XPS Nitrogen Composition of N-Doped Carbons

Fractional Fractional Fractional Fractional %
Sample % Pyridinic % Pyrrolic % Graphitic - °
Oxidized N
N N N
Dendritic 40.4 20.5 27.8 11.3
Spheroidal 41.8 19.7 28.4 10.1
Flake 40.1 21.2 27.6 11.1
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Figure S6. Gas adsorption isotherms employed for porosimetry. a-¢) N> isotherms at 77 K
plotted over linear (a) and logarithmic (b) scales, and DFT fits (c¢). Multi-point BET analysis
of N> adsorption employed for surface area quantification (d).CO> isotherms at 273 K to
quantify ultramicroporosity, plotted over linear (e) and logarithmic (f) scale. Pore volume (g)
and surface area (h) distributions.
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Figure S7. Variable rate cycling of duplicate cells for dendritic (a, b), spheroidal (¢, d), and
flake (e, f) templated carbons.



Table S5. Average Capacity for Variable Rate Cycling

Capacity at Capacity Capacity Capacity Capacity Capacity
Sample 005Ag" at0lAg at02Ag  at05Ag atl0Ag at20Ag
(mAhg))  (mAhg) (mAhg) (mAhg) (mAhg)  (mAhg’)

Dendritic 640 + 4% 481 + 3% 308 + 4% 146 + 5% 58 + 1% 17+ 8%

Spheroidal 544 + 5% 440 = 7% 352 + 8% 230 £ 8% 127 + 9% 54 + 1%

Flake 610 + 2% 498 *+ 3% 403 = 2% 277 £ 2% 177 + 6% 92 +10%
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Figure S8. Long-term cycling at 0.2 A g with three formation cycles at 0.02 A g of
duplicate cells for dendritic (a, b), spheroidal (¢, d), and flake (e, f) templated carbons. It
should be noted that the cells represented in (a,c,e) were cycled at the same time, and cells
represented in (b,d,f) were cycled together but at a separate time from (a,c,e). Slight
differences in the room temperature during these time periods correlates to the change in
curve shape between the two sample sets.
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Table S6. Average Capacity and Coulombic Efficiency for Long-term Cycling

Sample Average Capacity Average Coulombic
b (mAh g?) Efficiency (%)
Dendritic 416 + 6% 98.8+ 0.1
Spheroidal 483+ 1% 98.9£ 0.2
Flake 541+ 6% 98.9+0.1
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~ 200 -
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Figure S9. Absolute dQ dV™! curve of flake, spheroidal and dendritic N-doped carbons of lithium
extraction at a cycling rate of 0.2 A g
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Figure S10. Post-mortem analysis of cycled carbon electrodes. SEM image of cycled dendritic N-
doped carbon electrode (a) and corresponding EDX of carbon (b), nitrogen (c¢), oxygen (d), sulfur (e),
and fluorine (f) signal in SEI. SEM image of cycled spheroidal N-doped carbon electrode (g) and
corresponding EDX of carbon (h), nitrogen (i), oxygen (j), sulfur (k), and fluorine (1) signal in SEIL
SEM image of cycled flake N-doped carbon electrode (m) and corresponding EDX of carbon (n),
nitrogen (o), oxygen (p), sulfur (q), and fluorine (r) signal in SEIL
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Figure S11. Cyclic voltammograms at a scan rate of 0.1 mV s’ of dendritic (a), spheroidal
(b), and flake (c¢) templated carbons.
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