Supporting Information

Incorporation of $\operatorname{Ir}\left(\mathbf{C}^{\wedge} N\right)_{2}\left(\mathbf{N}^{\wedge} N\right)-\mathbf{N i C l}_{2}$ in $\left(\mathbf{N}^{\wedge} N\right)$-Covalent Organic Framework for Transcendent Dual Catalysis in Photochemical Cross-

Coupling Synthesis

Yan-Lin Lia ${ }^{\text {a }}$, Fuke Wang ${ }^{\text {b }}$, Jagadese J. Vittalc ${ }^{\text {c }}$, Peng Jin ${ }^{\text {b,d }}$, Sheng-Li Huang*a, and Guo-Yu Yang*a
${ }^{\text {a MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of }}$
Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
${ }^{\mathrm{b}}$ Institute of Materials Research and Engineering, A*STAR, 138634, Singapore.
${ }^{c}$ Department of Chemistry, National University of Singapore, 117542, Singapore.
${ }^{\mathrm{d}}$ State Key Laboratory of Coking Coal Resources Green Exploitation, China Pingmei Shenma Group, Pingdingshan 467000, China.

1. General Information

1.1 Materials

All the chemicals and solvents were purchased from commercially available sources (Sigma Aldrich GmbH, Bide Pharmatech Ltd, Energy Chemical and TCI Deutschland) and were used as received without further purification except otherwise noted.

1.2 General Procedures

Fourier-transform infrared (FT-IR) spectra (KBr pellets) were recorded on a Smart OmniTransmission spectrometer in the of range $4000-400 \mathrm{~cm}^{-1}$. Brunauer-Emmett-Teller (BET) surface areas were measured by N_{2} adsorption and desorption at 77 K using a Micromeritics ASAP2020 analyzer. Pore size distribution was calculated from the adsorption or desorption branch with the nonlocal density functional theory (NLDFT).TGA was performed on a Mettler Toledo TGA/DSC 1000 analyzer under N_{2} atmosphere at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. PXRD spectra were measured by Bruker D8 Advance XRD diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54056 \AA$). UV/Vis absorption spectra were recorded on a UV-2600 220V CH spectrometer (Shimadzu, Japan). ${ }^{1} \mathrm{H}$ NMR data was obtained using Bruker Avance IIIHD $400 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR data was obtained using Bruker Avance IIIHD 700 MHz . Field emission SEM images, mapping images and engrgy dispersive x-ray spectrometry (EDS) was observed by JOEL JSM-7500FFESEM microscope. X-ray photoelectron spectroscopy XPS was performed on Kratos Axis Ultra DLD with monnchromated Al K α radiation ($h v=1486.6 \mathrm{ev}$). The electrochemical test was performed on a CHI 760E electrochemical workstation. Photocatalytic reactions are carried out using a multi-channel photochemical reaction system featuring 10 W 450 nm LED lamps. The reaction of oxidation was monitored by GC (GC-14C, Shimadzu) equipped with a HP-5 column, air carrier gas and FID conductivity detector. The product was further confirmed with gas chromatography-mass spectrometer (GC-MS) Agilent 7890A/5975C.

2. Synthesis of materials

2.1 Synthesis of 5,5',5"-(benzene-1,3,5-triyl)tripicolinaldehyde (L)

\mathbf{L} were synthesized as per literature procedures ${ }^{1}$. A mixture of 1,3,5-tris(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)benzene ($680 \mathrm{mg}, 1.5 \mathrm{mmol}$), 5-bromo-2-pyridinecarboxaldehyde (1.25 mg , $6.7 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~g}, 22 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4(516.9 \mathrm{mg}, 0.44 \mathrm{mmol})$ in anhydrous DMF (100 mL) was degassed and stirred under N_{2} atmosphere at $90^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure and the solid residue triturated with water, collected by filtration and washed with water ($3 \times$), hot diethyl ether $\left(2 \times\right.$) and hot hexane $(2 \times)$. The dried solid was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and collected again. The resulting product was redissolved in hot CHCl_{3}, the insoluble materials filtered off and $\mathrm{Et}_{2} \mathrm{O}$ added to the filtrate to precipitate out pure product as a pale yellow solid ($230 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=10.17(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta=192.8,152.3,148.7,139.30,139.28,135.6,127.0$, 121.9. ESI-MS: $m / z 393.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$

2.2 Synthesis of $\left[\operatorname{Ir}(\mathbf{p p y})_{2} \mathbf{C l}_{2}(\mathbf{p p y}=\mathbf{2}\right.$-phenylpyridine, $\mathbf{O T f}=$ trifluoromethanesulfonic)

$\left[\operatorname{Ir}(\text { ppy })_{2} \mathrm{Cl}\right]_{2}$ were synthesized as per literature procedures ${ }^{2}$. $\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($194.0 \mathrm{mg}, 0.55 \mathrm{mmol}$) and 2-phenylpyridine $(190.0 \mathrm{mg}, 1.22 \mathrm{mmol})$ were dissolved in a mixture of 2-ethoxyethanol $(30 \mathrm{~mL})$ and water (10 mL), which was refluxed for 24 h under an argon atmosphere. Then the solution was cooled to room temperature, the resulting yellow precipitate was collected with a glass filter frit. The precipitate was successively washed with ethanol $(30 \mathrm{~mL})$ and acetone $(30 \mathrm{~mL})$ to obtain the yellow solid $\left[\operatorname{Ir}(\mathrm{ppy})_{2} \mathrm{Cl}\right]_{2}$ with a yield of $91.0 \%(270.5 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right): 9.17(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.6.9 \mathrm{~Hz}, \mathrm{H}_{A}\right), 7.90\left(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}_{D}\right), 7.79\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{C}\right), 7.55\left(4 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{E}\right), 6.86(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{F}\right), 6.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{B}\right), 6.65\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{G}\right), 5.95\left(4 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$): 168.0, 151.3, 144.5, 144.0, 136.5, 130.5, 129.1, 123.7, 122.3, 121.5, 118.4.
$\left[\operatorname{Ir}(\mathrm{ppy})_{2} \mathrm{Cl}\right]_{2}(107.2,0.1 \mathrm{mmol}), \operatorname{AgOTf}(\mathrm{OTf}=$ triflate $)(51.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 10 mL acetonitrile were taken in a 100 mL Schlenk tube. The tube was immersed in a preheated oil bath at $80^{\circ} \mathrm{C}$ and stirred for 8 h under an argon atmosphere in a dark environment. Then, the tube was removed from the oil bath and allowed to cool to room temperature. The white precipitate formed during the reaction was filtered off, and the yellow filtrate $\left[\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{MeCN})_{2}\right]$ OTf in acetonitrile was collected in a 25 mL Schlenk tube, and the tube was stored under nitrogen protection. The concentration of $\left[\operatorname{Ir}(\text { ppy })_{2}(\mathrm{MeCN})_{2}\right] \mathrm{OTf}$ was $0.02 \mathrm{mmol} / \mathrm{mL}$.
$2.3\left[\operatorname{Ir}(\text { coum })_{2} \mathrm{Cl}_{2}(\right.$ coum $=3-(2-$ Benzothiazolyl)-7-(diethylamino)coumarin)

$\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (194.0mg, 0.55 mmol$)$ and Coumarin $6(430.0 \mathrm{mg}, 1.22 \mathrm{mmol})$ were dissolved in a mixture of 2-ethoxyethanol $(30 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, which was refluxed for 24 h under an argon atmosphere. Then, the solution was cooled to room temperature, and the yellow precipitate was collected with a glass filter frit. The precipitate was washed with ethanol (30 mL) and acetone (30 mL) to obtain the orange solid $\left[\operatorname{Ir}(\text { coum })_{2} \mathrm{Cl}_{2}\right.$ with a yeild of $84.9 \%(433.2 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta=7.89(\mathrm{~d}, 1 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, 1 \mathrm{H}), 4.99(\mathrm{~d}, 1 \mathrm{H}), 3.09(\mathrm{~m}$, $4 \mathrm{H}), 0.91(\mathrm{t}, 6 \mathrm{H})$.
$\left[\operatorname{Ir}(\text { coum })_{2} \mathrm{Cl}_{2}(185.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{AgOTf}(\mathrm{OTf}=\right.$ triflate $)(51.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 10 mL acetonitrile were taken in a 100 mL Schlenk tube. The tube was immersed in a preheated oil bath at 80 ${ }^{\circ} \mathrm{C}$ and stirred for 8 h under an argon atmosphere in a dark environment. Then, the tube was removed from the oil bath and allowed to cool to room temperature. The white precipitate formed during the reaction was filtered off, and the yellow filtrate $\left[\operatorname{Ir}(\mathrm{coum})_{2}(\mathrm{MeCN})_{2}\right] \mathrm{OTf}$ in acetonitrile was collected in in a 25 mL Schlenk tube, and the tube was stored under nitrogen protection. The concentration of $\left[\operatorname{Ir}(\text { coum })_{2}(\mathrm{MeCN})_{2}\right]$ OTf was $0.02 \mathrm{mmol} / \mathrm{mL}$.

2.4 Synthesis of I-COF

A Pyrex tube measuring $10 \times 8 \mathrm{~mm}$ (o.d \times i.d) was charged with $\mathbf{L}(15.72 \mathrm{mg}, 0.04 \mathrm{mmol})$, benzene-1,4-diamine $(6.48 \mathrm{mg}, ~ 0.06 \mathrm{mmol}), 0.8 \mathrm{~mL}$ of a mixture of 0.2 mL mesitylene and 0.6 mL 1,4Dioxane, 0.06 mL of 9 M aqueous acetic acid water. The tube was flash frozen at 77 K (liquid N_{2} bath), evacuated to an internal pressure of 150 mTorr and flame sealed. The reaction was heated at $120{ }^{\circ} \mathrm{C}$ for 72 h yielding a yellow solid at the bottom of the tube which was isolated either by filtration or centrifugation and washed with DMA and THF, the resulting powder was dried at $10^{-2} \mathrm{mTorr}$ under $100^{\circ} \mathrm{C}$ for 12 h and to afford two-dimensional imine-based I-COF as a yellow solid.

2.5 Synthesis of Q-COF

A Pyrex tube measuring $10 \times 8 \mathrm{~mm}$ (o.d \times i.d) was charged with $\mathbf{L}(15.72 \mathrm{mg}, 0.04 \mathrm{mmol})$, benzene-1,4-diamine $(6.48 \mathrm{mg}, ~ 0.06 \mathrm{mmol}), 0.8 \mathrm{~mL}$ of a mixture of 0.2 mL mesitylene and 0.6 mL 1,4Dioxane, 0.06 mL of 9 M aqueous acetic acid water. The tube was flash frozen at 77 K (liquid N 2 bath), evacuated to an internal pressure of 150 mTorr and flame sealed. The reaction was heated at $120^{\circ} \mathrm{C}$ for 72 h yielding a yellow solid at the bottom of the tube which was isolated either by filtration or centrifugation and washed with DMA and THF, the resulting powder was subsequently subjected to the reaction with phenylacetylene $(12.24 \mathrm{mg}, 0.12 \mathrm{mmol})$ at $120^{\circ} \mathrm{C}$ in the presence of $\mathrm{BF} 3 \cdot \mathrm{Et} 2 \mathrm{O}$ $(16.00 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (32.00mg, 0.12 mmol$)$ in toluene for 72 h . The solid separated from the reaction mixture was washed with excess anhydrous THF and saturated NaHCO 3 , and then dried under vacuum to afford quinoline-linked $\mathbf{Q}-\mathbf{C O F}$ as dark yellow solid. Yield: $29.02 \mathrm{mg}, 90 \%$ based on \mathbf{L}.

2.6 Synthesis of $\left[\operatorname{Ir}(p p y)_{2}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{2}\right] @ Q-C O F$

In a 25 mL round bottom-flask, 20.0 mg of \mathbf{Q}-COF were suspended on 5 mL of acetonitrile. $\left[\operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{MeCN})_{2}\right] \mathrm{OTf}$ in acetonitrile (5% equiv. per $\mathrm{N}^{\wedge} \mathrm{N}$ functionality) was added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 hours. After heating, the tube was removed from the oil bath and allowed to cool to room temperature. The residue was washed with DMA and THF. The washing was repeated another two times.

Then, 5 mL DMA and Ni (DME) Cl_{2}, (10% equiv. per $\mathrm{N}^{\wedge} \mathrm{N}$ functionality) was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 hours. yielding a brown powder that was isolated by filtration and washed with DMA and THF. The resulting powder was washed with THF using Soxhlet extraction, then filtered and dried first at room temperature under vacuum for 12 h , and then at $120^{\circ} \mathrm{C}$ for 24 h to afford an reddish-brown powder, $\left[\operatorname{Ir}(\mathbf{p p y})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{\mathbf{2}}\right] @ \mathbf{Q}-\mathbf{C O F}$.

2.7 Synthesis of $\left[\operatorname{Ir}(\operatorname{coum})_{2}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathrm{NiCl}_{2}\right] @ Q-C O F$

In a 25 mL round bottom-flask, 20.0 mg of $\mathbf{Q} \mathbf{- C O F}$ were suspended on 5 mL of acetonitrile. $\left[\operatorname{Ir}(\text { coum })_{2}(\mathrm{MeCN})_{2}\right] \mathrm{OTf}$ in acetonitrile (5% equiv. per $\mathrm{N}^{\wedge} \mathrm{N}$ functionality) was added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 hours. After heating, the tube was removed from the oil bath and allowed to cool to room temperature. The residue was washed with DMA and THF. The washing was repeated another two times.

Then, 5 mL DMA and $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$, (10% equiv. per $\mathrm{N}^{\wedge} \mathrm{N}$ functionality) was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 hours. yielding a brown powder that was isolated by filtration and washed with DMA and THF. The resulting powder was washed with THF using Soxhlet extraction, then filtered and dried first at room temperature under vacuum for 12 h , and then at $120{ }^{\circ} \mathrm{C}$ for 24 h to afford an reddish-brown powder, $\left[\operatorname{Ir}(\mathbf{c o u m})_{2}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{2}\right] @ Q-C O F$.

3. General procedure for photocatalytic process

$3.1\left[\operatorname{Ir}(\operatorname{coum})_{2}\left(\mathrm{~N}^{\wedge} \mathbf{N}\right)+\mathrm{NiCl}_{2}\right] @ Q-C O F$ catalyzed C-S cross-coupling of thiophenols and aryl iodides

Under \mathbf{N}_{2} atmosphere, $2 \mathrm{mg}\left[\operatorname{Ir}(\mathbf{c o u m})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l} \mathbf{N}_{\mathbf{2}}\right] @ \mathbf{Q} \mathbf{C O F}, 0.2 \mathrm{mmol}$ aryl iodide, 0.3 mmol thiophenol, 0.3 mmol pyridine, and 0.2 mL acetonitrile were added into a 10 mL photocatalytic bottle, under irradiation of 10 W 450 nm LED lamp for 12 h at room temperature. Afterwards, the catalyst was removed from the reaction mixture via centrifugation and the solution was extracted with acetonitrile. Conversions were determined by gas chromatography.

$3.2\left[\operatorname{Ir}(\operatorname{coum})_{2}\left(\mathrm{~N}^{\wedge} \mathrm{N}\right)+\mathrm{NiCl}_{2}\right] @ Q-C O F$ catalyzed $\mathrm{C}-\mathrm{N}$ cross-coupling of amines and aryl iodides

Under N_{2} atmosphere, $2 \mathrm{mg}\left[\operatorname{Ir}(\mathbf{c o u m})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l} \mathbf{2} @ \mathbf{Q} \mathbf{- C O F}, 0.1 \mathrm{mmol}\right.$ aryl iodide, 0.15 mmol amines, 0.15 mmol 1,1,3,3-tetramethylguanidine (TMG), and 0.1 mL acetonitrile were added into a 10 mL photocatalytic bottle, under irradiation of 10 W 450 nm LED lamp for 24 h at room temperature. Afterwards, the catalyst was removed from the reaction mixture via centrifugation and the solution was extracted with acetonitrile. Conversions were determined by gas chromatography.

4. Characterization analysis

Table S1. Unit cell parameters and structures of I-COF and Q-COF

Unit cell parameters	COF structures
I-COF with AA packing Space group: P6 $a=b=37.4999 \AA$ $\mathrm{c}=3.4693 \AA$$\begin{gathered} \alpha=\beta=90^{\circ} \gamma=120^{\circ} \\ R_{W P}=4.39 \% \\ R_{p}=2.87 \% \end{gathered}$	
	Side view 边
Q-COF with AA packing Space group: P6 $a=b=36.8486 \AA$ $\mathrm{c}=3.4993 \AA$ $\alpha=\beta=90^{\circ} \gamma=120^{\circ}$ $\mathrm{R}_{\mathrm{WP}}=5.58$ \% $R_{p}=3.95 \%$	
	Side view

Figure S1 a) FT-IR spectra of reactants, I-COF, Q-COF and $\left[\operatorname{Ir}(\mathbf{c o u m})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{\mathbf{2}}\right] @ \mathbf{Q}-\mathbf{C O F}$, b) N 1s XPS patterns of I-COF, c) Ni 2 p and d) Ir 4f XPS patterns of $\left[\operatorname{Ir}(\mathbf{c o u m})_{2}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{\mathbf{2}}\right] @ Q-C O F$.

Figure S2 a) The simulated, experimental and Pawley refined PXRD patterns of I-COF. b) PXRD patterns of QCOF and $\left[\operatorname{Ir}(\mathbf{c o u m})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{\mathbf{2}}\right] @ \mathbf{Q}-\mathbf{C O F}$. c) AA and AB packing structures of Q-COF

Signal(ppm)	Assignment
116.07	a
122.56	e
125.66	j
136.51	$\mathrm{~g}, \mathrm{i}, \mathrm{f}$
147.44	$\mathrm{~d}, \mathrm{~h}$
152.99	b
159.82	c

Signal(ppm)	Assignment
119.86	k, q
126.52	$\mathrm{l}, \mathrm{j}, \mathrm{n}, \mathrm{e}, \mathrm{a}$
135.60	$\mathrm{~h}, \mathrm{o}, \mathrm{i}, \mathrm{f}, \mathrm{g}, \mathrm{m}$
146.56	c, b
153.31	$\mathrm{~d}, \mathrm{p}$

Figure S3 Solid-state ${ }^{13} \mathrm{C}$ NMR spectroscopy of a) I-COF and b) Q-COF

Figure S4 Pore size distribution of a) Q-COF and b) $\left[\operatorname{Ir}(\mathbf{c o u m})_{2}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{\mathbf{2}}\right] @ \mathbf{Q}-\mathbf{C O F}$

Figure S5 SEM and EDS mapping image of Q-COF

Figure S6 TGA curves of the I-COF and Q-COF under air atmosphere

Figure S7 Mott-Schottky plots of a) I-COF, b) Q-COF, $\mathbf{c})\left[\operatorname{Ir}(\mathbf{p p y})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{\mathbf{2}}\right] @$ Q-COF and d) $\left[\operatorname{Ir}(\text { coum })_{2}\left(\mathbf{N}^{\wedge} \mathrm{N}\right)+\mathrm{NiCl}_{2}\right] @$ Q-COF

Figure S8 a) The recyclability and b) PXRD patterns of of $\left[\operatorname{Ir}(\mathbf{c o u m})_{2}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{2}\right] @ Q-C O F$ for stability studies. c) Ni 2 p and d) Ir 4f XPS patterns of recycled $\left.\left[\operatorname{Ir}(\mathbf{c o u m})_{2}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{2}\right] @ Q-C O F . e\right)$ TEM of recycled $\left[\operatorname{Ir}(\mathbf{c o u m})_{2}\left(\mathbf{N}^{\wedge} \mathrm{N}\right)+\mathrm{NiCl}_{2}\right] @ Q-\mathrm{COF}$

Figure $\mathbf{S 9}$ Emission spectra of $\left[\operatorname{Ir}(\mathbf{c o u m})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l} \mathbf{L}_{2} @ \mathbf{Q}-\mathbf{C O F}(0.02 \mathrm{mM}, \mathrm{MeCN})\right.$ after the addition of different amounts of a) 1-iodo-4-(trifluoromethyl)benzene, b) 4-methylbenzenethiol, c) Pyridine, and d) 4methylbenzenethiol+pyridine (based on the reaction ratio) with 450 nm excitation.

Figure S10 Emission spectra of $\left[\operatorname{Ir}(\mathbf{c o u m})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l}_{\mathbf{2}}\right] @ \mathbf{Q}-\mathbf{C O F}(0.02 \mathrm{mM}, \mathrm{MeCN})$ after the addition of different amounts of a) Aniline, b) 1,1,3,3-tetramethylguanidine(TMG), and c) aniline+TMG (based on the reaction ratio) with 450 nm excitation.

Figure S11 Comparative Stern-Volmer quenching plot during C-N cross coupling reactions.

$$
\text { Stern-Volmer equation }\left(\mathrm{I}_{0} / \mathrm{I}\right)=1+\mathrm{K}_{\mathrm{sv}}[\mathrm{Q}] ;
$$

where $\left(\mathrm{I}_{0} / \mathrm{I}\right)=$ The ratio of fluorescence intensity in the absence and the presence of quencher, $\mathrm{K}_{\mathrm{sv}}=$ quenching constant,
$[\mathrm{Q}]=$ quencher concentration,

Figure S12 Cyclic voltammograms of reactants a) 4-methylbenzenethiol, b) 4-methylbenzenethiol + pyridine, c) Aniline, d) Aniline+TMG (based on the reaction ratio) with 0.1 M TBAH (tetrabutylammonium hexafluorophosphate) in acetonitrile solution under N_{2} with scan rate of $100 \mathrm{mV} / \mathrm{s}$. Conditions: 1 mM , a negative scan direction. Glassy carbon working electrode, saturated calomel electrode (SCE) reference electrode, and Pt silk counter electrode.

Figure S13 Cyclic voltammograms of Cyclic voltammograms of reactant 1-iodo-4-(trifluoromethyl)benzene

Figure S14 Proposed mechanisms of $\left[\operatorname{Ir}(\mathbf{c o u m})_{\mathbf{2}}\left(\mathbf{N}^{\wedge} \mathbf{N}\right)+\mathbf{N i C l} \mathbf{I}_{\mathbf{2}} @\right.$ Q-COF catalyzed C-N cross-coupling of amines and aryl iodides

5 Computational Studies methods for binding energy

The binding energy $\triangle E$ of $\pi-\pi$ interaction between reactants or products with dangling phenyl moieties in COF was carried out by Forcited Caculation, which was widely used in molecular mechanics on Material studio 2020.

The Q-COF was constructed with reactants closed to the dangling phenyl moieties. Task was on geometry optimization, Forcefield on COMPASSII, and Charges on Use current. The geometry optimized position of reactants and products in Q-COF was shown in Figure S13. Then, the same computing method but for Task on Energy was carried out for $\mathrm{E}_{(\mathrm{A})}, \mathrm{E}_{(\mathrm{B})}$ and $\mathrm{E}_{(\mathrm{AB})}$, respectively. $\mathrm{E}_{(\mathrm{A})}$ stands for the total energy of reactants and products, $\mathrm{E}_{(\mathrm{B})}$ for $\mathbf{Q}-\mathbf{C O F}, \mathrm{E}_{(\mathrm{AB})}$ for reactants and products in Q-COF. Finally, the binding energy $\triangle \mathrm{E}$ of $\pi-\pi$ interaction was calculated by the Eq. S3, as shown in Table S1.

$$
\Delta \mathrm{E}=\mathrm{E}_{(\mathrm{AB})}-\mathrm{E}_{(\mathrm{A})}-\mathrm{E}_{(\mathrm{B})}(\mathrm{Eq} \cdot \mathrm{~S} 3)
$$

Figure S15. The geometry and energy optimized diagram of reactants and COF: a) Benzenethiol, b) Aniline, c) Iodobenzene
Table S2. The binding energy between substrates with dangling phenyl moieties in the pores of COF

Total energy	$\triangle \mathrm{E} / \mathrm{kcal} / \mathrm{mol}$
Compounds	-13.5575
Aniline	-11.7035
Iodobenzene	-11.6977

Table S3. Fractional atomic coordinates for the unit cell of I-COF

Element	Atom Number	x	y	z
H	1	0.715716	0.305078	0
H	2	0.773329	0.342434	0
H	3	0.829661	0.496532	0
H	4	0.751901	0.447861	0
H	5	0.606308	0.098466	0
H	6	0.578175	0.536272	0
H	7	0.541973	0.578402	0
H	8	-0.30508	0.410637	0
H	9	-0.34243	0.430895	0
H	10	-0.49653	0.333129	0
H	11	-0.44786	0.304041	0
H	12	-0.09847	0.507841	0
H	13	-0.53627	0.041904	0
H	14	-0.5784	-0.03643	0
H	15	-0.41064	-0.71572	0
H	16	-0.4309	-0.77333	0
H	17	-0.33313	-0.82966	0
H	18	-0.30404	-0.7519	0
H	19	-0.50784	-0.60631	0
H	20	-0.0419	-0.57818	0
H	21	0.036429	-0.54197	0
H	22	-0.71572	-0.30508	0
H	23	-0.77333	-0.34243	0
H	24	-0.82966	-0.49653	0
H	25	-0.7519	-0.44786	0
H	26	-0.60631	-0.09847	0
H	27	-0.57818	-0.53627	0
H	28	-0.54197	-0.5784	0
H	29	0.305078	-0.41064	0
H	30	0.342434	-0.4309	0
H	31	0.496532	-0.33313	0
H	32	0.447861	-0.30404	0
H	33	0.098466	-0.50784	0
H	34	0.536272	-0.0419	0

H	35	0.578402	0.036429	0
H	36	0.410637	0.715716	0
H	37	0.430895	0.773329	0
H	38	0.333129	0.829661	0
H	39	0.304041	0.751901	0
H	40	0.507841	0.606308	0
H	41	0.041904	0.578175	0
H	42	-0.03643	0.541973	0
C	1	0.693976	0.318216	0
C	2	0.710249	0.361416	0
C	3	0.634667	0.243323	0
C	4	0.785438	0.377138	0
C	5	0.842803	0.445471	0
C	6	0.816407	0.461638	0
C	7	0.773775	0.434882	0
C	8	0.585035	0.112149	0
C	9	0.520351	0.476794	0
C	10	0.54298	0.520006	0
C	11	0.523043	0.543207	0
C	12	-0.31822	0.375761	0
C	13	-0.36142	0.348834	0
C	14	-0.24332	0.391344	0
C	15	-0.37714	0.4083	0
C	16	-0.44547	0.397332	0
C	17	-0.46164	0.354769	0
C	18	-0.43488	0.338893	0
C	19	-0.11215	0.472886	0
C	20	-0.47679	0.043557	0
C	21	-0.52001	0.022974	0
C	22	-0.54321	-0.02016	0
C	23	-0.37576	-0.69398	0
C	24	-0.34883	-0.71025	0
C	25	-0.39134	-0.63467	0
C	26	-0.4083	-0.78544	0
C	27	-0.39733	-0.8428	0
C	28	-0.35477	-0.81641	0
C	29	-0.33889	-0.77378	0
C	30	-0.47289	-0.58504	0
C	31	-0.04356	-0.52035	0
C	32	-0.02297	-0.54298	0
C	33	0.020163	-0.52304	0

C	34	-0.69398	-0.31822	0
C	35	-0.71025	-0.36142	0
C	36	-0.63467	-0.24332	0
C	37	-0.78544	-0.37714	0
C	38	-0.8428	-0.44547	0
C	39	-0.81641	-0.46164	0
C	40	-0.77378	-0.43488	0
C	41	-0.58504	-0.11215	0
C	42	-0.52035	-0.47679	0
C	43	-0.54298	-0.52001	0
C	44	-0.52304	-0.54321	0
C	45	0.318216	-0.37576	0
C	46	0.361416	-0.34883	0
C	47	0.243323	-0.39134	0
C	48	0.377138	-0.4083	0
C	49	0.445471	-0.39733	0
C	50	0.461638	-0.35477	0
C	51	0.434882	-0.33889	0
C	52	0.112149	-0.47289	0
C	53	0.476794	-0.04356	0
C	54	0.520006	-0.02297	0
C	55	0.543207	0.020163	0
C	56	0.375761	0.693976	0
C	57	0.348834	0.710249	0
C	58	0.391344	0.634667	0
C	59	0.4083	0.785438	0
C	60	0.397332	0.842803	0
C	61	0.354769	0.816407	0
C	62	0.338893	0.773775	0
C	63	0.472886	0.585035	0
C	64	0.043557	0.520351	0
C	65	0.022974	0.54298	0
C	66	-0.02016	0.523043	0
N	1	0.82669	0.403997	0
N	2	0.542689	0.454835	0
N	3	-0.404	0.422694	0
N	4	-0.45484	0.087854	0
N	5	-0.42269	-0.82669	0
N	6	-0.08785	-0.54269	0
N	7	-0.82669	-0.404	0
N	8	-0.54269	-0.45484	0

N	9	0.403997	-0.42269	0
N	10	0.454835	-0.08785	0
N	11	0.422694	0.82669	0
N	12	0.087854	0.542689	0

Table S4. Fractional atomic coordinates for the unit cell of Q-COF

Element	Atom Number	x	y	z
H	1	0.568073	0.334546	0
H	2	0.694958	0.443576	0
H	3	0.664385	0.491846	0
H	4	0.588102	0.302987	0
H	5	0.4327	0.66713	0
H	6	0.306711	0.556837	0
H	7	0.338108	0.509572	0
H	8	0.412183	0.69814	0
H	9	0.362328	0.478229	0
H	10	0.72001	0.651164	0
H	11	0.689284	0.69918	0
H	12	0.610511	0.668431	0
H	13	0.331002	0.426669	0
H	14	0.283042	0.347845	0
H	15	0.313708	0.299924	0
H	16	0.392625	0.330704	0
H	17	0.479148	0.119882	0
H	18	0.427317	0.099589	0
H	19	0.96723	0.546421	0
H	20	0.968935	0.559473	0
H	21	0.549578	0.578334	0
H	22	0.562536	0.58962	0
H	23	-0.33455	0.233527	0
H	24	-0.44358	0.251383	0
H	25	-0.49185	0.172539	0
H	26	-0.30299	0.285116	0
H	27	-0.66713	-0.23443	0
H	28	-0.55684	-0.25013	0
H	29	-0.50957	-0.17147	0
H	30	-0.69814	-0.28596	0
H	31	-0.47823	-0.1159	0
H	32	-0.65116	0.068847	0
H	33	-0.69918	-0.0099	0
H	34	-0.66843	-0.05792	0
H	35	-0.42667	-0.09567	0

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { H } & 36 & -0.34785 & -0.0648 & 0 \\ \hline \text { H } & 37 & -0.29992 & 0.013784 & 0 \\ \hline \text { H } & 38 & -0.3307 & 0.061921 & 0 \\ \hline \text { H } & 39 & -0.11988 & 0.359266 & 0 \\ \hline \text { H } & 40 & -0.09959 & 0.327728 & 0 \\ \hline \text { H } & 41 & -0.54642 & 0.42081 & 0 \\ \hline \text { H } & 42 & -0.55947 & 0.409462 & 0 \\ \hline \text { H } & 43 & -0.57833 & -0.02876 & 0 \\ \hline \text { H } & 44 & -0.58962 & -0.02708 & 0 \\ \hline \text { H } & 45 & -0.23353 & -0.56807 & 0 \\ \hline \text { H } & 46 & -0.25138 & -0.69496 & 0 \\ \hline \text { H } & 47 & -0.17254 & -0.66439 & 0 \\ \hline \text { H } & 48 & -0.28512 & -0.5881 & 0 \\ \hline \text { H } & 49 & 0.23443 & -0.4327 & 0 \\ \hline \text { C } & 5 & 0 & 0.250125 & -0.30671\end{array}\right] 0$

C	11	0.65969	0.429998	0
C	12	0.64281	0.45656	0
C	13	0.649945	0.359902	0
C	14	0.623377	0.316612	0
C	15	0.424081	0.535389	0
C	16	0.402955	0.562303	0
C	17	0.411536	0.631781	0
C	18	0.368077	0.614343	0
C	19	0.342054	0.570972	0
C	20	0.359349	0.544909	0
C	21	0.350684	0.640555	0
C	22	0.376847	0.684057	0
C	23	0.605435	0.507052	0
C	24	0.588375	0.533519	0
C	25	0.397623	0.492001	0
C	26	0.414684	0.465534	0
C	27	0.614833	0.576907	0
C	28	0.388177	0.422043	0
C	29	0.658342	0.594068	0
C	30	0.684712	0.637364	0
C	31	0.667755	0.663886	0
C	32	0.624292	0.646916	0
C	33	0.597837	0.603441	0
C	34	0.34475	0.405126	0
C	35	0.318347	0.361689	0
C	36	0.335248	0.335216	0
C	37	0.378855	0.352229	0
C	38	0.405222	0.395613	0
C	39	-0.52603	-0.04148	0
C	40	-0.48254	-0.02441	0
C	41	-0.45611	0.018977	0
C	42	-0.47303	0.045487	0
C	43	-0.51665	0.028307	0
C	44	-0.54304	-0.01498	0
C	45	-0.46376	0.115309	0
C	46	-0.43973	0.159649	0
C	47	-0.36983	0.219852	0
C	48	-0.38655	0.246421	0
C	49	-0.43	0.229693	0
C	50	-0.45656	0.18625	0
C	51	-0.3599	0.290043	0

C	52	-0.31661	0.306765	0
C	53	-0.53539	-0.11131	0
C	54	-0.5623	-0.15935	0
C	55	-0.63178	-0.22025	0
C	56	-0.61434	-0.24627	0
C	57	-0.57097	-0.22892	0
C	58	-0.54491	-0.18556	0
C	59	-0.64056	-0.28987	0
C	60	-0.68406	-0.30721	0
C	61	-0.50705	0.098383	0
C	62	-0.53352	0.054856	0
C	63	-0.492	-0.09438	0
C	64	-0.46553	-0.05085	0
C	65	-0.57691	0.037926	0
C	66	-0.42204	-0.03387	0
C	67	-0.59407	0.064273	0
C	68	-0.63736	0.047348	0
C	69	-0.66389	0.003869	0
C	70	-0.64692	-0.02263	0
C	71	-0.60344	-0.0056	0
C	72	-0.40513	-0.06038	0
C	73	-0.36169	-0.04334	0
C	74	-0.33522	0.000032	0
C	75	-0.35223	0.026626	0
C	76	-0.39561	0.009609	0
C	77	0.041482	-0.48455	0
C	78	0.024409	-0.45813	0
C	79	-0.01898	-0.47509	0
C	80	-0.04549	-0.51851	0
C	81	-0.02831	-0.54496	0
C	82	0.014976	-0.52806	0
C	83	-0.11531	-0.57907	0
C	84	-0.15965	-0.59938	0
C	85	-0.21985	-0.58968	0
C	86	-0.24642	-0.63297	0
C	87	-0.22969	-0.65969	0
C	88	-0.18625	-0.64281	0
C	89	-0.29004	-0.64995	0
C	90	-0.30677	-0.62338	0
C	91	0.111307	-0.42408	0
C	92	0.159348	-0.40296	0

C	93	0.220246	-0.41154	0
C	94	0.246265	-0.36808	0
C	95	0.228919	-0.34205	0
C	96	0.18556	-0.35935	0
C	97	0.289871	-0.35068	0
C	98	0.307209	-0.37685	0
C	99	-0.09838	-0.60544	0
C	100	-0.05486	-0.58838	0
C	101	0.094378	-0.39762	0
C	102	0.050851	-0.41468	0
C	103	-0.03793	-0.61483	0
C	104	0.033866	-0.38818	0
C	105	-0.06427	-0.65834	0
C	106	-0.04735	-0.68471	0
C	107	-0.00387	-0.66776	0
C	108	0.022625	-0.62429	0
C	109	0.005604	-0.59784	0
C	110	0.060376	-0.34475	0
C	111	0.043343	-0.31835	0
C	112	-3.2E-05	-0.33525	0
C	113	-0.02663	-0.37886	0
C	114	-0.00961	-0.40522	0
N	1	0.467502	0.552459	0
N	2	0.535501	0.446643	0
N	3	0.572866	0.396392	0
N	4	0.428975	0.605762	0
N	5	-0.55246	-0.08496	0
N	6	-0.44664	0.088858	0
N	7	-0.39639	0.176474	0
N	8	-0.60576	-0.17679	0
N	9	0.084957	-0.4675	0
N	10	-0.08886	-0.5355	0
N	11	-0.17647	-0.57287	0
N	12	0.176787	-0.42898	0

References

(1) A. M. Castilla, N. Ousaka, R. A. Bilbeisi, E. Valeri, T. K. Ronson and J. R. Nitschke, High-Fidelity Stereochemical Memory in a $\mathrm{Fe}_{4}{ }^{\mathrm{II}} \mathrm{L}_{4}$ Tetrahedral Capsule. J. Am Chem Soc, 2013, 135, 17999-18006.
(2) O. Chepelin, J. Ujma, X. Wu, A. M. Z. Slawin, M. B. Pitak, S. J. Coles, J. Michel, A. C. Jones, P. E. Barran and P. J. Lusby, Luminescent, Enantiopure, Phenylatopyridine Iridium-Based Coordination Capsules. J. Am Chem Soc, 2012, 134, 19334-19337.

