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S1. ADDITIONAL INFORMATION ON COMPUTATIONAL METHODS

A. VASP ’on-the-fly’ machine learning method

In this work, we employ the ’on-the-fly’ machine learning method, implemented in VASP;

the underlying theory and concepts are described in the literature [1–3]. In brief, we first

trained the machine-learning force fields (MLFFs) using the ’on-the-fly’ machine learning

(ML) method. After training, we employed the MLFFs in MD simulations directly turning

off the ’on-the-fly’ ML component. The potential energy of a system containing N atoms is

decomposed into individual atomic energies:

U =
N∑
i=1

Ui. (S1)

Local configurations determine this local energy, which can be expressed as a functional

U = F [ρi] of the probability distribution ρi of finding another atom j in the local atomic

environments:

ρi(r) =
N∑
j=1

fcut(rij)g(r − rij). (S2)

fcut is a cutoff function to ensure that only atoms within a certain cutoff radius are included

and g(r) is approximated as

g(r) =
1√

2σatomπ
exp

(
− r2

2σ2
atom

)
, (S3)

with the broadening of the atomic distributions, σatom. In the VASP ’on-the-fly’ machine

learning method, radial and angular descriptors construct the local environment in a way

such that rotational invariance is satisfied. The radial descriptor (ρ
(2)
i ) and angular descrip-

tors (ρ
(3)
i ) are given as

ρ
(2)
i (r) =

1√
4π

N0
R∑

n=1

cinχn0(r), (S4)

ρ
(3)
i (r, s, θ) =

Lmax∑
l=0

N l
R∑

n=1

N l
R∑

µ=1

√
2l + 1

2
pinµlχµl(r)χµl(s)Pl(cos(θ)). (S5)

Here, the expansion coefficients (Pnµl) for angular descriptors are

P i
nµl =

√
8π2

2l + 1

l∑
m=−l

[cinlmc
i∗
µlm −

Na∑
j

cijnlmc
ij∗
µlm], (S6)
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where χµl and Pl describe normalized spherical Bessel function and Legendre polynomials

of order l, respectively. cjnlm, N
0
R, and N l

R denote the expansion coefficients, number of

radial basis functions for radial descriptors, and number of radial basis functions for angular

descriptors. The indices n, l,m denote the radial, angular, and magnetic quantum numbers.

The descriptors are then expressed for a local configuration i as

x
(2)T

i = (ci100, c
i
100, ...) , (S7)

as well as

x
(3)T

i = (pi110, p
i
111, ..., p

i
120, p

i
121, ...) , (S8)

which contain the coefficients cin00 and pinµl, respectively. The local potential energy of atom

i can then be expressed using a weighted kernel function, K(xi, xiB), where xi and xiB are

local instantaneous and local reference configurations as

Uα
i =

NB∑
iB=1

ωiBK(xi, xiB) , (S9)

with basis set size NB and the linear weights ωiB obtained from the regression model.

B. Detailed numerical parameters and settings

In the following, we provide all parameters used in the ab initio molecular dynamics

(AIMD) and ML molecular dynamics (MLMD) simulations along the list of solid-state ion

conductors (SSICs) discussed in the main text.

α-AgI : A 128 atom supercell with cell parameters a = b = c = 18.32 Å and α = β =

γ = 109.47◦ was simulated at 500K using a plane-wave cutoff energy of 280 eV [4]. We used

the PAW potentials for Ag with 4d10, 5s1 valence configuration and I with 5s2, 5p5 valence

configuration. The system was equilibrated for 10 ps before carrying out the production run

of 100 ps, using a time step of 10 fs. AgI has only very low frequency vibrations due to the

large atomic masses of Ag+ and I− ions, for which we found the mentioned time step of 10 fs

to be sufficient. The training of the MLFF involved 4000 equilibrated AIMD snapshots in

order to obtain well-converged BEEF values. The number of Bessel functions was set to 8

for both the radial and the angular parts, and the cutoff radius for both was set to 5 Å. The

atomic coordinates were smeared in the distributions by placing Gaussians with a width of
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0.5 Å for both radial angular descriptors. From these, 1696 local atomic configurations were

selected for iodine atoms, and 2744 were selected for Ag atoms.

Li10GeP2S12 (LGPS): A 2 × 2 × 1 supercell of 200 atoms was used containing 80 Li, 8

Ge, 16 P and 96 S atoms. Cell parameters were set to experimental values of a = 17.18 Å,

b = 17.76 Å, c = 12.97 Å, and α = 91.98◦, β = 90.64◦, γ = 90.25◦ [5]. PAW potentials

were used for Li (3 electrons; 1s2, 2s1) Ge (14 electrons; 3d10, 4s2, 4p2), P (5 electrons;

3s2, 3p3), and S (6 electrons; 3s2, 3p4). A plane-wave cutoff of 500 eV was used, and the

temperature was set to 500K in all simulations because the LGPS tetragonal phase is stable

at that temperature [6, 7]. The equilibration time for the simulation was 9 ps followed

by a production run of 20 ps, using a time step of 2 fs. MLFFs were generated from 1000

equilibrated AIMD snapshots. The number of Bessel functions was set to 4 for both the radial

and the angular descriptors, and the cutoff radii for the radial and angular descriptors were

set to 9 Å and 6 Å, respectively. The atomic coordinates were smeared in the distributions

by placing Gaussians with a width of 0.5 Å for both radial angular descriptors. From these,

2852 local atomic configurations were selected for Li atoms, 537 for Ge atoms, 711 for P

atoms, and 3601 for S atoms.

Na3SbS4: We constructed a 2 × 2 × 2 supercell consisting of 128 atoms. The employed

PAW potentials were Na (7 electrons; 2p6, 3s1), Sb (5 electrons; 5s2, 5p3), and S (6 electrons;

3s2, 3p4). The tetragonal phase was employed for pristine Na3SbS4, with cell parameters

set as a = b = 14.333 Å and c = 14.581 Å following experimental results from X-ray powder

diffraction analysis [8]. The plane wave cutoff was set to 400 eV and the temperature of the

NVT runs to 300K, using a time step of 2 fs. We equilibrated the system for 5 ps, followed

by a 50 ps production run.

To explore the effect of aliovalent doping in Na3SbS4, tungsten (W) was used as a dopant

at a concentration of 6%, replacing one Sb atom and adding a Na vacancy resulting in

a doped supercell with 127 atoms. Cell parameters were set to a = b = 14.3996 Å and

c = 14.4604 Å according to results from experimental measurements [9]. The 6 electron

PAW potential of W with electrons from 5d5, 6s1 was used in addition to the ones reported

above. The simulation length was 80 ps after equilibration of the system for 5 ps with a time

step of 2 fs. The temperature was kept at 300K.

The MLFFs of pristine Na3SbS4 were generated using 10000 AIMD snapshots. Here, an

increased amount of training data was chosen in order to describe both the low-frequency
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vibrational modes of Na+ ions and the high-frequency ones of the SbS4 tetrahedra reasonably

well. As we will discuss later, these are separated in frequency, which we found demanded

enhanced MLFF training times. The number of Bessel functions was set to 12 for the radial

and to 8 for the angular part and their cutoff radius was set to 5 Å and 8 Å, respectively.

The atomic coordinates were smeared in the distributions by placing Gaussians with a

width of 0.5 Å for both radial angular descriptors. For pristine Na3SbS4, 834 local atomic

configurations were selected for Na atoms, 310 were selected for Sb atoms, and 1100 for S

atoms. For tungsten-doped Na2.94Sb0.94W0.06S4, we retrained the MLFF starting from the

one of the pristine system, using a sample of 5000 AIMD steps. All other parameters were

kept fixed. Here, 1097 local atomic configurations were selected for Na atoms, 304 were

selected for Sb atoms, 1609 for S atoms, and 136 for W atoms.

The computational cost of AIMD simulations are compared with the cost of the active

learning for generation of the MLFFs and with the cost of performing MLMD simulations

using the pre-trained MLFF, see Table S1. We observe a tremendous reduction in the amount

of required core-hours per 1000 MD simulation steps for the MLMD simulations with respect

to the AIMD ones, highlighting further the potential of MLMDs towards high-throughput

materials simulations.

System AIMD On-the-fly learning MLMD

AgI 476 31.2 4

LGPS 693 125 10.2

Na2.94Sb0.94W0.06S4 306 33.2 5.8

TABLE S1. Computational costs for AIMD simulations in comparison to the on-the fly learning

of MLFFs, and MLMD simulations using pre-trained MLFFs for systems under investigation. All

values are given in units of core-hours per 1000 MD simulation steps.
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S2. ADDITIONAL FIGURES

A. AgI
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FIG. S1. Comparison of atomic forces calculated in MLFF and DFT calculations for (a) I and (b)

Ag in AgI. Root mean square errors (RMSEs) are 45.5meV Å
−1

and 40.2meV Å
−1

for I and Ag,

respectively. We randomly selected five snapshots from AIMD trajectories that serve as a test set.

I

Ag𝜃

FIG. S2. Structural representation of AgI4 and the tetrahedral angle, θ.
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FIG. S3. Probability density, ρ(θ), as obtained from the 48 tetrahedra of the AgI supercell. The

MLFF was trained first at 500K and then retrained at 800K to sample an extended phase space

(see Main Text for discussion).
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FIG. S4. Size transferability of machine-learning force fields in AgI from a 128 atom to a 1024

atom supercell: (a) Pair correlation function g(r) as function of the distance r, (b) vibrational

density of states, VDOS, as function of the frequency ω, and the Ag+ mean square displacement,

MSD, as function of time t.
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B. LGPS
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FIG. S5. Comparison of atomic forces calculated in MLFF and DFT calculations for (a) Li, (b) Ge,

(c) P, and (d) S atoms in LGPS. RMSEs are 27.7meV Å
−1

(Li), 75.7meV Å
−1

(Ge), 85.0meV Å
−1

(P), and 45.4meV Å
−1

(S). The test set is constructed from five random snapshots from AIMD

trajectories.
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FIG. S6. Pair-correlation function, g(r), for non-Li bonding ions in LGPS calculated from AIMD

and MLMD.
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FIG. S7. Van Hove correlation function: (a) self part, Gs(r,∆t), and (b) distinctive part, Gd(r,∆t),

of Li ions in LGPS calculated from AIMD.

FIG. S8. Structural representation of a PS4 tetrahedron bonded to a neighboring Li atom. Dynamic

structural correlations are quantified by the dihedral angle, ϕ, between P, S, and Li, and the Li–S

distance, rLi−S.
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FIG. S9. 2D probability density, ρ(rLi−S, ϕ) of (a) P–S–Li and (b) Ge–S–Li angles, ϕ, and Li–S

distances rLi−S, extracted from 32 PS4 and 32 GeS4 tetrahedra and their neighboring Li+ ions. All

results were computed with AIMD.
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C. Na3SbS4
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FIG. S10. Bayesian estimated error of the force (BEEF) during the training of the machine-learned

force field for the pristine Na3SbS4.
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FIG. S11. Pair correlation function, g(r), of pristine Na3SbS4 from AIMD and MLMD.

S10



0 100 200 300 400 500
 (cm 1)

0

40

80

120

160

VD
OS

 (a
.u

.) Total

Na

Sb
S

AIMD
MLMD

FIG. S12. Vibrational density of states, VDOS, of pristine Na3SbS4 from AIMD and MLMD.
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FIG. S13. Mean square displacement of all elements in pristine Na3SbS4 from (a) AIMD and (b)

MLMD.
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FIG. S14. Self part of the van Hove correlation, Gs(r,∆t), for Na+ ions in pristine Na3SbS4 from

AIMD (left) and MLMD (right).
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FIG. S15. Distinctive part of the van Hove correlation, Gd(r,∆t), for Na+ ions in pristine Na3SbS4

from AIMD (left) and MLMD (right).
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FIG. S16. Bayesian estimated error of the force (BEEF) during the training of the machine-learned

force field for the W-doped Na2.94Sb0.94W0.06S4.
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FIG. S17. Comparison of atomic forces calculated in MLFF and DFT calculations for (a) Na, (b)

Sb, (c) S, and (d) W atoms in Na2.94Sb0.94W0.06S4. RMSEs are 14.0meV Å
−1

(Na), 41.4meV Å
−1

(Sb), 24.3meV Å
−1

(S), and 52.3meV Å
−1

(W). We randomly selected five snapshots from AIMD

trajectories that serve as a test set.
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FIG. S18. Pair correlation function, g(r), for W–S in the W-doped Na2.94Sb0.94W0.06S4 calculated

from AIMD and MLMD.
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FIG. S19. Difference in the VDOS, ∆VDOS, between MLMD and AIMD for doped

Na2.94Sb0.94W0.06S4.
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FIG. S20. Self (left) and distinctive part (right) of the van Hove correlation, Gs(r,∆t) and

Gd(r,∆t), respectively, for Na+ ions in W-doped Na2.94Sb0.94W0.06S4 calculated from AIMD.
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from AIMD simulations.
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