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Section S1. Experimental procedures and calculation methods

1.1 Experimental Section

The Zn batteries (CR2032) are assembled using commercial zinc foil as an anode, glass fiber 

membrane, and 2 M Zn(OTF)2 aqueous electrolyte. The preparation steps of the positive electrode 

material AQ and IDT are as follows: AQ and IDT are used as the active substance, PTFE is used 

as the binder, and super P conductive agents are selected, and the slurry is prepared by mixing them 

in an ethanol dispersant in a mass ratio of 6 : 3 : 1. Then, the obtained slurry is dried in an 80 ℃ 

vacuum oven to remove the solvent. The dried slurry was uniformly loaded on the stainless-steel 

mesh (the mass loading of active materials in the cathode is ~1.0 mg cm−2). Then, we further 

increased the mass loading to 4, 8, and 10 mg cm−2 for high mass-loading electrochemical 

performance tests, respectively.

1.2 Characterization 

The sample morphology was observed by field-emission scanning electron microscopy (SEM, 

Hitachi S-4800) and transmission electron microscopy (TEM, JEM-2100). The elemental mapping 

characterization was carried out on a JEM-F200 instrument equipped with an energy diffraction 

system. Fourier-transformed infrared spectrum (FT-IR) was collected through a Thermo Nicolet 

NEXUS spectrometer. X-ray diffraction test was performed to analyze the material structure using 

X-ray diffraction (XRD, Bruker D8 advance powder diffractometer with a Cu Kα radiation source). 

X-ray photoelectron spectrometer (XPS, AXIS Ultra DLD) was utilized to study the surface 

chemistry of the samples. Thermogravimetric (TG) analysis was performed with an STA409 PC 

thermogravimetric analyzer in a nitrogen atmosphere at a heating speed of 10 °C min−1. Nitrogen 

adsorption/desorption measurements were performed using a Micromeritics ASAP2020 

physisorption analyzer at -196 °C. The specific surface area, pore volume, and pore size distribution 

were evaluated by using the Brunauer-Emmett-Teller (BET) equation and the nonlocal density 

functional theory model. The ultraviolet-visible (UV-Vis) spectra were obtained with a JASCO V-

750 UV-Vis spectrometer.

The optical energy gaps (Eg, eV) of organic cathodes can be determined by ultraviolet-visible 

(UV-Vis) spectroscopy, which is expressed as:

α ∝( hv - Eg )1/2 / hv



hv = 1240 / λ

where α denotes the optical absorption coefficient, hv is the photon energy, λ is the wavelength.

Before ex-situ characterizations, the electrode surface needs to be fine polishing to remove zinc 

salts. For ex-situ characterizations including XPS, XRD, and SEM, the organic cathodes were 

collected by disassembling the batteries at specific voltages during (dis)charging. After that, the 

electrodes were rinsed thoroughly with distilled water for 5 times to guarantee the removal of 

adhered glass fiber and residual electrolyte. Finally, the electrodes were dried in a vacuum oven at 

60 °C for 24 h. 

1.3 Electrochemical Tests

The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements 

with an amplitude of 0.005 V and a test frequency of 10−2~106 HZ were characterized on a CHI660E 

electrochemical workstation. The equivalent circuit of Nyquist plots includes the equivalent series 

resistance (Rs), charge transfer resistance (Rct), Warburg impedance (Zw) and constant phase angle 

element (CPE). Galvanostatic charge/discharge (GCD) measurements were conducted on the 

CT3001A battery test system in the potential range of 0−1.6 V. The specific capacity (Cm, mAh 

g−1) was determined from GCD profiles using the following form:

                              Cm =  
I ×  ∆t

m 
                                                                 (Eq. S1)

where I, Δt, m refer to the current density (A g−1), the discharging time (s) and the mass loading 

(g) of active materials on the cathode, respectively.

The gravimetric energy density (E, Wh kg−1) and power density (P, W kg−1) of ZIHCs were 

estimated based on the following forms:

E = Cm × ΔV                           ( )Eq. S2

                         P = E / 1000 × Δt                       ( )Eq. S3

where ΔV is the voltage window (V). 

1.4 Density functional theory (DFT) calculation

Density functional theory (DFT)S1, S2 was employed to optimize the stabilized structures of AQ 



and IDT with Gaussian 09 software packageS3.The B3LYP functionalS4, 5 with 6-31G(d, p) basis 

setsS6-8 were selected in all the calculations. On the basis of the optimized structure of AQ/IDT 

molecule, the electrostatic potential (ESP) analysis on van der Waals surface was done to deduce 

the possible Zn2+ and OTF− ions uptake positions using the Multiwfn 3.7 software packageS9 and 

the cubeman utilization in the Gaussian 09 software package. According to the analysis of ESP, 

the coordination structures of IDT with Zn2+ and OTF− ions were optimized.

Considering thermal correction based on frequency analysis, the binding free energies (ΔG) of 

every system was the difference of electronic energy. According to frequency and optimization 

analysis results, the ΔG of the five probable discharging progresses were then calculated. 



Section S2. Supporting characterization results
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Fig. S1. FT-IR spectra of IDT and AQ.

1.5 2.0 2.5 3.0 3.5 4.0

Optical energy gap: Eg
hv-Eg

hv
 

 

(
hv

)2  (a
.u

.) 

Photon Energy (eV)

 IDT
 AQ

Fig. S2. Solid-state UV–vis spectra of IDT and AQ.
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Fig. S3. The calculated electrical conductivity of AQ and IDT.



Fig. S4. SEM images of IDT and AQ.

Fig. S5. TGA curves of AQ and IDT.
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Fig. S6. GCD curves of AQ cathode.
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Fig. S7. GCD curves of IDT and AQ cathodes at 10 A g−1.
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Fig. S8. Cycling stability and corresponding coulombic efficiency of the Zn//AQ battery.

Fig. S9. SEM images of Zn anodes before and after cycles.



Table S1. Comparison of rate capacity, energy density and cycling performance of recently 

reported organic cathode materials for ZIBs in the literatures.

Organic cathode Electrolyte
Voltage

(V)

Capacity 

(mAh g-1/A g-1)

Retention

(%) / (cycles)
Ref.

1 M 

Zn(CF3SO3)2

0.8-1.4 205 / 0.04
70 / 200 

at 0.217 A g-1
S10

2 M ZnSO4 0.3-1.4 210.9 / 0.05
83.8 / 23 000 

at 2 A g-1
S11

2 M ZnSO4 0.35-1.25 240 / 0.1
73.7 / 2000 

at 1 A g-1
S12

2 M ZnSO4 0.35-1.25 170 / 0.1 - S12

2 M ZnCl2 0-1.0 122.9 / 0.2
68.2 / 1000 

at 8 A g-1
S13

3 M 

Zn(CF3SO3)2

0.2-1.8 203 / 0.02
86 / 50 

at 0.04 A g-1
S14

2 M ZnSO4 0.4-1.45 260 / 0.1
79 / 2000 

at 2 A g-1
S15

2 M 

Zn(CF3SO3)2

0.2-1.8 210.2 / 0.05
70.6 / 20, 000 

at 5 A g-1
S16

1 M ZnSO4 0.1-1.6 443 / 0.05
50.2 / 100 

at 0.05 A g-1
S17

2 M ZnSO4 0.1-1.4 244 / 0.3
50 / 210 

at 0.5 A g-1
S18

2 M 

Zn(CF3SO3)2

0-1.6 238 / 0.2
88.7 / 3000 

at 10 A g-1

This 

work
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Fig. S10. Capacitive contribution of the AQ cathode at 20 mV s-1.
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Fig. S11. CV curves of IDT and AQ.

Fig. S12. Ex-situ XPS spectra of IDT cathodes at various discharged/charged states.
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Fig. S13. CV curves of IDT at ZnSO4/H2O electrolyte.

Fig. S14. Ex-situ XRD patterns. 
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Fig. S15. GCD curves of IDT cathode at 0.33 M Zn(OTF)2/acetonitrile electrolyte.
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Fig. S16. GCD curves of IDT cathode at HOTF electrolytes with different pH values.

Fig. S17. ESP plots of IDT and AQ.
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