Supplementary information

Decoding the Manganese-Ion Storage Properties of Na_{1.25}V₃O₈ Nanorods

Vaiyapuri Soundharrajan,^{a£} Subramanian Nithiananth,^{b£} Ghalib Alfaza,^c JunJi Piao,^c Duong Tung Pham,^d Edison Huixiang Ang,^e Johannes Kasnatscheew,^{a,f} Martin Winter^{a,f}, Jung Ho Kim^{g,h*} and Jaekook Kim^{c,i*}

- a MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Münster, Corrensstraße 46, 48149 Germany.
- b Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu,
 Shizuoka, 432–8011, Japan.
- c Department of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Bukgu, Gwangju 61186, Republic of Korea
- d School of Engineering Physics, Hanoi University of Science and Technology, No 1 Dai Co Viet Street, 100000, Hanoi, Viet Nam.
- e Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
- f Helmholtz-Institute Münster (IEK-12), Forschungszentrum Jülich Münster, Corrensstraße 46, 48149 Germany.
- g Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, New South Wales, 2500, Australia.
- h School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419,
 Republic of Korea.
- Research Center for Artificial Intelligence Assisted Ionics Based Materials Development Platform,
 Chonnam National University, Gwangju, 61186, Republic of Korea; Fax: +82-62-530-1699; Tel: +82-62-530-1703

Corresponding Author

Jaekook Kim (E-mail: jaekook@chonnam.ac.kr)

S.No	Elements	Х	Y	Z	SOF	Sites
1	NA(1)	0.18400	0.75000	0.64100	1.250	1a
2	NA(2)	0.81600	0.25000	0.31670	1.250	1a
3	V(3)	0.11860	0.25000	0.91510	1.000	1a
4	V(4)	0.31580	0.25000	0.45970	1.000	1a
5	V(5)	0.25810	0.25000	0.19130	1.000	1a
6	V(6)	0.74190	0.75000	0.80870	1.000	1a
7	V(7)	0.68420	0.75000	0.54030	1.000	1a
8	V(8)	0.88140	0.75000	0.07920	1.000	1a
9	O(9)	0.04690	0.75000	0.92790	1.000	1a
10	O(10)	0.22230	0.25000	0.81890	1.000	1a
11	O(11)	0.19250	0.25000	0.55280	1.000	1a
12	O(12)	0.14730	0.25000	0.32580	1.000	1a
13	O(13)	0.17390	0.75000	0.17320	1.000	1a
14	O(14)	0.52320	0.75000	0.72700	1.000	1a
15	O(15)	0.39870	0.75000	0.46120	1.000	1a
16	O(16)	0.69300	0.75000	0.95030	1.000	1a
17	O(17)	0.30700	0.25000	0.04970	1.000	1a
18	O(18)	0.60130	0.25000	0.53880	1.000	1a
19	O(19)	0.47680	0.25000	0.27300	1.000	1a
20	O(20)	0.82610	0.25000	0.82680	1.000	1a
21	O(21)	0.85270	0.75000	0.67420	1.000	1a
22	O(22)	0.80750	0.75000	0.44720	1.000	1a
23	O(23)	0.77770	0.75000	0.18110	1.000	1a
24	O(24)	0.95310	0.25000	0.07210	1.000	1a

 Table S1. Rietveld refinement outputs of NVO.

I	R _{wp} (%)=4.36,	R _{exp} (%)=3.37	, Chi ² =1.673	60F=1.2938	
a= 12.118	30 Å, b=3	.6061 Å, c=	7.2421 Å	Space group name	P21/m
α=90	°, β=106.88	3°, γ=90°	Unit-cell v	olume = 302.831736	Å^3

(0 0 1)

(200)

Fig. S1. Crystal structure from Rietveld refinement outputs of NVO.

Fig. S2. The EDS-mapping Zn-Mn alloy micro-flakes.

Table S2. The R1, R2, R3, R4, and W4 for MS-NVO samples (before and after cycling).

Sample Name	R1 (Ω)	R2 (Ω)	R3 (Ω)	R4 (Ω)	W4
					$(\Omega.S^{-1/2})$
Before cycle fitting	0.774	435.3	169	282.3	168
After cycle fitting	0.625	138	97	117	39.04

Table S3. The R1, R2, R3, R4, and W4 for MC-NVO samples (before and after cycling).

Sample Name	R1 (Ω)	R2 (Ω)	R3 (Ω)	R4 (Ω)	W4
					$(\Omega.S^{^{\Lambda}}-1/2)$
Before cycle	0.197	253	115.7	274.1	165.6
fitting					
After cycle	0.145	80.8	30.68	65.68	44.16
fitting					

Fig. S3. Charge/discharge curves of the NVO||AC cell at (a) different rates and (b) 2.0 A $g^{\mbox{-}1}.$