Boosting Electrocatalytic Activity of Single Atom Iron Catalysts through Sulfur-

Doping Engineering for Liquid and Flexible Rechargeable Zn-air Batteries

Tianfang Yang ^a, Bingcheng Ge ^a, XuPo Liu ^a, Zunjie Zhang ^b, Ye Chen ^a *, Yang Liu ^a *

^a School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China

^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China

* Corresponding author. E-mail address: chenye@htu.edu.cn (Y. Chen), liuyang20208@htu.edu.cn (Y. Liu).

Fig. S1. (a) FE-SEM images of Fe SAs@N-C catalyst.

Fig. S2. XPS survey spectra of Fe SAs@S/N-C.

Fig. S3. The measurement of electrochemical double-layer capacitance (C_{dl}). CV curves of (a) Fe SAs@S/N-C, (b) Fe SAs@N-C, (c) Pt/C in 0.1 mol L⁻¹ KOH solution at the scan rates of 5, 10, 15, 20, 30, 40 and 50 mV s⁻¹. (d) C_{dl} values at different scanning rates.

Fig. S4. The CO tolerance test by Chronoamperometric response of Fe SAs@S/N-C and Pt/C.

Fig. S5. (a) SEM images, (b) AC HAADF-STEM image, (c) XRD patterns, XPS survey spectra of Fe SAs@S/N-C after 10 K cycles

Fig. S6. LSV curves of the Fe SAs@S/N-C and Fe SAs@S/N-C-G.

Fig. S7. XRD patterns of PpPD-Fe/S@SiO₂, PoPD-Fe/S@SiO₂ and PmPD-Fe/S@SiO₂.

Fig. S8. (a-b) FE-SEM images, (c) TEM image of Fe SAs@S/N-C_{PoPD}. (d-e) FE-SEM images, (f) TEM image of Fe SAs@S/N-C_{PmPD}.

Fig. S9. (a) XRD patterns, (b) Raman spectra, (c) FT-IR spectra, (d) N_2 adsorption-desorption isotherms (inset is the pore size distribution curves) of Fe SAs@S/N-C, Fe SAs@S/N-C_{PoPD} and Fe SAs@S/N-C_{PmPD}.

Fig. S10. (a) C 1s XPS spectra, (b) O 1s spectra, (c) S 2p spectra, (d) N 1s XPS spectra, (h) N contents and chemical configurations, (f) Fe 2p XPS spectra of Fe SAs@S/N-C, Fe SAs@S/N-C_{PoPD} and Fe SAs@S/N-C_{PmPD}.

Fig. S11. ORR performance in O₂-saturated 0.1 M KOH: (a) CV curves, (b) LSV curves. (c) H_2O_2 yields and electron numbers, (d) Tafel plots, (e) C_{dl} values at different scanning rates, (f) Nyquist impedance plots of Fe SAs@S/N-C, Fe SAs@S/N-C_{PoPD} and Fe SAs@S/N-C_{PmPD}.

Fig. S12. Discharging polarization curves recorded at 10 mA cm⁻² of Fe SAs@S/N-C and $Pt/C+IrO_2$.

Fig. S13. Discharging polarization curves recorded at 5 mA cm⁻² of Fe SAs@S/N-C and $Pt/C+IrO_2$.

Sample	I_D/I_G	${S_{ m BET}} \over (m^2 g^{-1})$	C (at.%)	N (at.%)	O (at.%)	Fe (at.%)	S (at.%)	Fe (wt%)
Fe SAs@S/N-C	1.27	775.1	77.92	10.87	8.86	0.66	1.69	5.45
Fe SAs@N-C	1.23	363.5	87.04	6.25	6.24	0.46	/	2.05
Fe SAs@S/N- C _{PoPD}	1.15	334.2	78.81	7.61	11.52	0.61	1.45	5.11
Fe SAs@S/N- C _{PmPD}	1.18	98.6	83.86	7.26	7.24	0.50	1.14	2.44

Table S1 The intensity ratios of the D band and G band, specific surface area and elemental contents

of Fe SAs@S/N-C, Fe SAs@N-C, Fe SAs@S/N-CPOPD and Fe SAs@S/N-CPMPD.

 Table S2 Fitting parameters of Fe K-edge FT-EXAFS.

Catalysts	Path	CN	R (Å)	$\sigma^2(\text{\AA}^2)$	R factor
Fe SAs@S/N-C	Fe-N	4.34	1.98	0.0098	0.0028

CN is the coordination number; R is the interatomic distance (the bond length between central atoms and surrounding coordination atoms); σ^2 is the Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances). R factor is used to value the goodness of the fitting.

Catalysts	$E_{\text{onset}}(\mathbf{V})$	$E_{1/2}$ (V)	References
Fe SAs@S/N-C	0.96	0.84	This work
Fe-BOAc-PNC	0.93	0.84	1
Co-Co ₃ O ₄ @NAC	0.93	0.79	2
S-FeNi/NiFe ₂ O ₄ @NC-800	/	0.84	3
Fe SAs HS	1.0	0.86	4
Ni-N ₄ /GHSs/Fe-N ₄	0.93	0.83	5
Fe-N/C ₃	0.89	0.78	6
NiFe-N-C	/	0.87	7
Co/CNT/MCP-850	0.94	0.80	8
PDA-Fe-900	0.92	0.84	9
Co@N-CNTF-2	0.91	0.81	10
FePc@CNF	0.966	0.875	11

Table S3. The ORR performance comparison of Fe SAs@S/N-C and other related carbon materials

 in the recently published works.

Table S4 Comparison of the liquid-state ZABs performance of Fe SAs@S/N-C with recently reported electrocatalysts.

Catalysts	Peak power density (mW cm ⁻²)	Specific capacity@10 mA $cm^{-2}(mAh g^{-1})$	References
Fe SAs@S/N-C	156	794	This work
FeS/Fe ₃ C@NS-C-900	90.9	750	12
Co/CeO2-NCNA@CC	123	784.4	13
Fe-N-C/N-OMC	113	711	14
NiFe-N-C	153.04	818	7
Fe-NF-CNTs	144	785	15
PDA-Fe-900	163	802.1	9
Fe ₁ Co ₃ -NC-1100	372	/	16
Fe/N-G-SAC	120	/	17
FeP/Fe2O3@NPCA	130	717	18
HPFe-N-C	160	672	19

Catalysts	Peak power density (mW cm ⁻²)	Specific capacity@5 mA cm ⁻² (mAh g ⁻¹)	References
Fe SAs@S/N-C	122	878	This work
HPFe-N-C	109	/	20
SSHPE-2	95.52	/	21
Fe1Co ₃ -NC-1100	156	/	16
KI-PVAA-GO	78.6	742	22
CCNF-PDIL	135	700	23
Fe SA/NCZ	101	/	24
FeNS/Fe ₃ C@CNS	176	/	25
PDA-Fe-900	116.6	800.5	9
FeP/Fe2O3@NPCA	40.8	676	18
Fe-BOAc-PNC	93	890	1

 Table S5 Comparison of the flexible ZABs performance of Fe SAs@S/N-C with recently reported
 electrocatalysts.

- J. Zhang, Y. Chen, M. Tian, T. Yang, F. Zhang, G. Jia and X. Liu, *Chinese Chemical Letters*, 2023, 34, 107886.
- 2 X. Zhong, W. Yi, Y. Qu, L. Zhang, H. Bai, Y. Zhu, J. Wan, S. Chen, M. Yang and L. Huang, Applied Catalysis B: Environmental, 2020, 260, 118188.
- 3 H. Wang, S. Su, T. Yu, C. Meng, H. Zhou, W. Zhao, S. Yan, T. Bian and A. Yuan, *Applied Surface Science*, 2022, **596**, 153522.
- 4 Y. Wang, P. Meng, Z. Yang, M. Jiang, J. Yang, H. Li, J. Zhang, B. Sun and C. Fu, *Angewandte Chemie*, 2023, e202304229.
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu and T. Ma, *Advanced Materials*, 2020, **32**, 2003134.
- 6 Q.-m. Wu, D.-k. Deng, Y.-l. He, Z.-c. Zhou, S.-b. Sang and Z.-h. Zhou, *Journal of Central South University*, 2020, **27**, 344-355.
- H. Meng, B. Wu, D. Zhang, X. Zhu, S. Luo, Y. You, K. Chen, J. Long, J. Zhu and L. Liu, *Energy & Environmental Science*, 2024, 17, 704-716.
- X. Zhou, X. Liu, J. Zhang, C. Zhang, S. J. Yoo, J.-G. Kim, X. Chu, C. Song, P. Wang, Z. Zhao, D.
 Li, W. Zhang and W. Zheng, *Carbon*, 2020, **166**, 284-290.
- 9 F. Zhang, X. Liu, Y. Chen, M. Tian, T. Yang, J. Zhang and S. Gao, Chinese Chemical Letters, 2023,

108142.

- 10 H. Guo, Q. Feng, J. Zhu, J. Xu, Q. Li, S. Liu, K. Xu, C. Zhang and T. Liu, *Journal of Materials Chemistry A*, 2019, 7, 3664-3672.
- Y. Wu, J. Liu, Q. Sun, J. Chen, X. Zhu, R. Abazari and J. Qian, *Chemical Engineering Journal*, 2024, 149243.
- Y.-W. Li, W.-J. Zhang, J. Li, H.-Y. Ma, H.-M. Du, D.-C. Li, S.-N. Wang, J.-S. Zhao, J.-M. Dou and
 L. Xu, ACS Applied Materials & Interfaces, 2020, 12, 44710-44719.
- S. Li, H. Zhang, L. Wu, H. Zhao, L. Li, C. Sun and B. An, *Journal of Materials Chemistry A*, 2022, 10, 9858-9868.
- 14 J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun, Z. L. Wang and C. Sun, Applied Catalysis B: Environmental, 2021, 280, 119411.
- 15 Y. Liu, X. Liu, C. Zhang, Y. Chen, Z. Wang, G. Wei, J. Zhang, T. Yang, F. Zhang and S. Gao, Journal of Alloys and Compounds, 2023, 941, 168922.
- Y. He, X. Yang, Y. Li, L. Liu, S. Guo, C. Shu, F. Liu, Y. Liu, Q. Tan and G. Wu, *Acs Catalysis*, 2022, 12, 1216-1227.
- 17 M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge, J. Zhu, Y. Wang, X. Zhao and Z. Chen, *Advanced Materials*, 2020, **32**, 2004900.
- 18 K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou and T. Li, *Advanced Materials*, 2020, **32**, 2002292.
- 19 H. Xu, D. Wang, P. Yang, L. Du, X. Lu, R. Li, L. Liu, J. Zhang and M. An, Applied Catalysis B: Environmental, 2022, 305, 121040.
- H. Xu, D. Wang, P. Yang, L. Du, X. Lu, R. Li, L. Liu, J. Zhang and M. An, *Appl. Catal. B-Environ.*,
 2022, 305, 121040.
- 21 X. Fan, R. Zhang, S. Sui, X. Liu, J. Liu, C. Shi, N. Zhao, C. Zhong and W. Hu, Angewandte Chemie International Edition, 2023, 62, e202302640.
- Z. Song, J. Ding, B. Liu, X. Liu, X. Han, Y. Deng, W. Hu and C. Zhong, *Adv. Mater.*, 2020, 32, 1908127.
- 23 M. Xu, H. Dou, Z. Zhang, Y. Zheng, B. Ren, Q. Ma, G. Wen, D. Luo, A. Yu and L. Zhang, *Angew. Chem. Int. Edit.*, 2022, e202117703.
- 24 C. Jiao, Z. Xu, J. Shao, Y. Xia, J. Tseng, G. Ren, N. Zhang, P. Liu, C. Liu and G. Li, Advanced

Functional Materials, 2023, 2213897.

25 Y. Wang, T. Yang, X. Fan, Z. Bao, A. Tayal, H. Tan, M. Shi, Z. Liang, W. Zhang and H. Lin, *Angewandte Chemie International Edition*, 2024, **63**, e202313034.