Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary materials

Synergistic of heterovalent valence states and oxygen vacancy defects engineering in Co/S co-doped TiO₂ for nitrogen photocatalytic to ammonia

Longyan Chen¹, Pengkun Zhang¹, Dong-Hau Kuo^{2,*}, Jianmei Jiang¹, Binghong Wu¹, Zhengjie Su¹, Osman Ahmed Zelekew³, Jinguo Lin^{1,*}, Xiaoyun Chen^{1,*}, Dongfang Lu^{1,*}

¹College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

² Department of Materials Science and Engineering & Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

³ Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia

*Corresponding author

E-mail address: dhkuo@mail.ntust.edu.tw (D. H. Kuo)

E-mail address: <u>fildf@126.com</u> (D. Lu)

E-mail address: <u>fjlinjg@126.com</u> (J. Lin)

E-mail address: <u>fjchenxy@126.com</u> (X. Chen)

Experimental section

1. Methods for determination of ammonia yield

1.1 Quantification of produced NH₃ using indophenol blue method.

Regarding the known literature reports [1], the reaction was carried out by mixing 4 mL of reaction solution with 50 µL of catalyst solution (aqueous solution of 1% CoTiOS), 500 µL of color developing solution (aqueous solution of 0.4 M C₇H₅O₃Na and 0.32 M NaOH) and 50 µL of oxidizing solution [NaClO (ρ Cl = 4 – 4.9) containing 0.75 M NaOH solution] were mixed. The mixture was then allowed to stand for 2 h under ambient conditions. A standard curve was obtained from the absorbance at 660 nm. The standard curve demonstrated a strong linear relationship (y = 0.6282x + 0.0077, R² = 0.999). The amount of produced NH₃ was calculated by the correction curve obtained.

1.2 Quantification of ammonia using the Ion chromatography method.

As previously reported in the literature [2], ammonia concentration analysis was performed on an ICS-3000 ion chromatography system (Dionex, Sunnyvale, CA, USA) with an analytical column (Dionex IonPac CS17, 4 × 250 mm), protective column (Dionex IonPac CG17, 4 × 50 mm), and chemical suppressor (CSRS-300, 4 mm) were used to control the flow rate of the samples at 1.0 mL/min. The leachate is a 20 mM methyl sulfonic acid aqueous solution. The conductivity cell was set at T = 35 °C, and the injection loop volume was 25 μ L. The samples were injected into the instrument for analysis using a membrane-based syringe of 0.45 μ m, and the injection was repeated nine times.

1.3 Determination of hydrazine via Watt-Chrisp method

Configuration of hydrazine working solution: Accurately measure 0.41 g of hydrazine sulfate and dissolve it in 500 mL of secondary reagent water with 74 mL of concentrated hydrochloric acid, then transfer it to a 1 L volumetric flask. And dilute to scale with secondary reagent water. Take an appropriate amount of the reserve solution and dilute it one hundred times with hydrochloric acid solution (1: 99).

P-Dimethylaminoanisole - Sulfuric acid solution: Measure 100 mL of concentrated sulfuric acid under constant stirring and slowly add it into a beaker containing 300 mL of secondary reagent water, then add 15 g of p-Dimethylaminoanisole after cooling. After complete dissolution, it was transferred into a 500 mL brown volumetric flask, and the secondary reagent water was diluted to the scale.

Take a set of hydrazine working solution to add 5 mL p-dimethylaminoanisole-sulfuric acid solution, and let it stand for 30 min to develop the color. After 30 min, the UV-visible spectra of the sample solution corresponding to the chromogenic agent were recorded at 455 nm, and the concentration of N₂H₄ was estimated according to the standard calibration curves generated by the different concentrations of N₂H₄ (0, 0.25, 1, 2, 4, 5 mg/L).

1.4 Determination of nitrate (NO₃⁻)

Quantitative analysis of NO_3^- ions using UV-vis spectroscopy. For NO_3^- ion detection, prepare standard stock solutions with different concentrations of NaNO₃, ranging from 0 to 10 µmol·L⁻¹. Then take 1 mL of the standard solution and perform UV-vis measurements within the range of 200-300 nm to obtain a similar calibration curve. Similarly, the amount of NO_3^- in the reaction mixture was measured using a UV-vis spectrophotometer, where the peak at 220 nm wavelength corresponds to the absorption of nitrate, and the corresponding amount is quantified relative to the measured absorbance value.

1.5 Determination of H₂O₂

According to literature reports [3, 4], the POD-DPD method was used to determine the concentration of H₂O₂ in the reactants. Usually, 0.3 mL of phosphate buffer (0.5 M K₂HPO₄ and 0.5 M KH₂PO₄), 30 μ L of DPD solution, and 30 μ L of peroxidase were mixed with the collected solution. Then, the mixture was shaken well for 30 s and detected by UV-vis spectrophotometry at 551 nm.

2. Apparent quantum efficiency (AQE) and solar-to-ammonia (STA) conversion efficiency test methods

The apparent quantum efficiency (AQE) indicates the rate at which a photocatalyst utilizes incident photons at a specific monochromatic wavelength. AQE was determined under the same nitrogen fixation conditions. 50 mg CoTiOS-3 catalyst was mixed with 100 mL of deionized water without any sacrificial agent. A 300 W xenon lamp irradiated the system, and the AQE was obtained under a 420 nm filter. The AQE formula for ammonia yield [5, 6] was calculated as follows:

$$AQE = \frac{Number of reacted electrons}{Number of incident photons} = \frac{Number of generated NH_3 \times 6}{Number of incident photons} = \frac{M \times N_a \times 6}{\frac{I \times A \times \lambda \times t}{hc}}$$

here, M is the amount of produced NH₃, *Na* is Avogadro's constant, I is the light intensity, A is the light incident area, t is the light irradiation time, h is Plank's constant, and c is the speed of light.

According to the literature [7], to determine the STA efficiency, the reaction was carried out using an AM1.5G solar simulator, where the conversion efficiency was calculated as

$$STA = \frac{[\Delta G \text{ for } NH_3 \text{ formation } (J/mol)] \times [NH_3 \text{ formation } (mol)]}{[total input energy } (W)] \times [reaction time(s)]}$$

The free energy of NH₃ production is 339 kJ·mol⁻¹. The energy intensity of the AM1.5G solar irradiation (1000 W·m⁻²) and the irradiated area is 4.26×10^{-4} m². Therefore, the total input energy is 0.426 W.

Additional tables and figures

Fig. S1 (a) XRD patterns of TiOS and TiO₂ and standard spectrum of TiO₂ (#71-1167). (b) Fully scanned spectrum, XPS characterization of CoTiOS nanomaterials.

Fig. S2 Photocatalytic N₂ fixation activity test of different samples.

Fig. S3 (a) The picture for chromogenic reaction graphs of the indophenol blue reagent method in photocatalytic N₂ stationary system with 0, 0.5, 1, 2, and 3 mL of standard solution (from left to right), respectively. (b) Color reaction diagrams of N₂H₄ at 0, 0.25, 1, 2, 4, and 5 mL. (c) The color change of the mixed solution when measuring H_2O_2 .

Fig. S4 (a, b) The standard curve of indophenol blue method and (c, d) Nessler's reagent, (e) The concentration of ammonium ions was detected by cation ion chromatography. N₂H₄ quantification method. (f) UV-vis absorption spectra and (g) corresponding calibration curves for the colorimetric N₂H₄ with linear fit analysis showing good linear correlation (y = 0.236x + 0.026, $R^2 = 0.998$).

Fig. S5 The test results of (a) indophenol blue, (b) Nessler's reagent.

Fig. S6 Absorption spectra and calibration curve for (a, b) NO₃⁻ ion detection.

Fig. S7 High-resolution XPS tests for (a) Ti 2p, (b) Co 2p, (c) S 2p, and (d) O 1s, respectively, after the reaction.

Sample	atomic percentage/%			O molar percentage/%		Co ²⁺ /Co ³⁺	Crystal	S _{BET}	Pore	
	Co	Ti	S	Ο	O _{Lattice}	O_{ν}	(%)	(nm)	(m ² /g)	(cm^3/g)
CoTiOS-1	4.39	26.06	4.15	65.40	78.54	21.46	4.02	4.8	161.9	0.176
CoTiOS-2	4.44	25.93	5.69	63.94	66.42	33.58	10.65	4.7	162.1	0.182
CoTiOS-3	4.66	26.12	6.73	62.49	53.66	46.34	15.42	4.9	162.6	0.191
CoTiOS-4	4.57	26.28	7.65	61.50	74.93	25.07	13.85	4.5	162.3	0.185
Co/TiO ₂	4.42	26.15	_	69.43	100	-	_	4.6	100.8	0.114
TiOS	_	32.61	6.51	60.88	80.24	19.76	_	4.9	106.4	0.123
CoTiOS-3 after reaction	4.61	26.08	6.74	62.57	53.59	46.41	15.36	5.0	_	_

Table S1 XPS composition and physical characteristics of CoTiOS, Co/TiO₂, and TiOS catalysts.

 Table S2 Elements contents from SEM-EDS analysis for samples.

Catalyst	Co (%)	Ti (%)	S (%)	O (%)	Ti/Co (%)
CoTiOS-1	3.47	25.75	4.25	66.53	7.42
CoTiOS-2	3.35	25.86	5.87	64.92	7.72
CoTiOS-3	3.29	26.02	7.12	63.57	7.91
CoTiOS-4	3.32	25.94	7.85	62.89	7.81
Co/TiO ₂	3.44	26.28	_	70.28	7.64
TiOS	_	31.97	6.54	61.51	_

Catalyst	Co (%)	Ti (%)	S (%)	O (%)	Ti/Co (%)
CoTiOS-1	3.99	26.54	4.01	65.43	6.65
CoTiOS-2	4.02	26.56	5.43	63.99	6.61
CoTiOS-3	4.10	26.79	6.75	62.36	6.53
CoTiOS-4	4.17	26.85	7.69	61.29	6.44
Co/TiO ₂	4.06	26.86	_	69.18	6.62
TiOS	_	32.02	6.14	61.84	-

 Table S3 Element analyses tested by XRF.

Table S4 Statistics of test results of catalyst CoTiOS on Nessler's reagent, indophenol blue, and cation

ion chromatography methods.

Catalyst	Nessler's reagent $(\mu mol \cdot g^{-1} \cdot h^{-1})$	indophenol blue $(\mu mol \cdot g^{-1} \cdot h^{-1})$	ion chromatography $(\mu mol \cdot g^{-1} \cdot h^{-1})$
CoTiOS-1	240.63	244.78	221.43
CoTiOS-2	380.81	369.85	354.12
CoTiOS-3	491.56	472.42	464.48
CoTiOS-4	325.74	310.77	308.64
Co/TiO ₂	20.12	19.52	18.56
TiOS	86.56	78.46	73.21

Photocatalyst	Light source	Reaction media	NH ₃ yield rate (μmol·g ⁻¹ ·h ⁻¹)	AQE (%)	N ₂ Source	Refs.
FeN-CDs/TiO2@CN	300 W Xe	5 wt% aqueous methanol	550.9	_	N ₂	[8]
Bi-CdMoO4	300 W Xe	Methanol solution	118	_	N ₂	[9]
MoS ₂ /UiO-66(SH) ₂	visible light $\lambda > 400 \text{ nm}$	Water	54.08	5.1% 400 nm	N ₂	[10]
TiO _{2-x} -Ag@HKUST- 1/carbon paper	visible light $\lambda = 450 \text{ nm}$	Water	624.7	2.08% 450 nm	N ₂	[11]
GO/MoS ₂ /Ag ₃ PO ₄	300 W Xe $\lambda > 420 \text{ nm}$	Na ₂ SO ₃ solution	17.5	0.063% 400 nm	N ₂	[12]
СеСО ₃ ОН	Visible light	Water	650	1% 300 nm	N ₂	[13]
BiCN _{x-5}	300 W Xe $\lambda > 420 \text{ nm}$	Na ₂ SO ₃ solution	576.11	0.53% 400 nm	N ₂	[14]
TiO ₂ /CuO	400 W Hg	Water	1.58	_	N_2	[15]
SrTiO ₃	300 W Xe	Water	206.0	0.38% 420 nm	N ₂	[16]
Au/TiO ₂	300 W Xe λ> 420 nm	10% methanol aqueous	78.60	0.82% 550 nm	N ₂	[17]
Ru ₁ /TiO ₂ -Vo	300 W Xe	Water	18.9	-	N ₂	[18]
MXene/TiO ₂	300 W Xe	Water	110	_	N ₂	[19]
Ni-doped TiO ₂	300 W Xe	Water	46.8	-	N ₂	[20]
TiO ₂ NBAs	300 W Xe	Water	178	0.12% 405 nm	N ₂	[21]
TiO ₂ Vo@PNIPAm	400 W Hg	Water	11.12	-	N ₂	[22]
1 wt% Ru-TiO ₂	300 W Xe	20% ethanol solution	3.31	-	N ₂	[23]
Cu-doped TiO ₂	300 W Xe	Water	78.90	0.23% 420 nm	N ₂	[24]
AgPt-TiO ₂	300 W Xe	Water	38.4	_	N ₂	[25]
CoTiOS-3	300 W Xe $(\lambda > 420 \text{ nm})$	Water	491.56	1.89% 420 nm	N ₂	This work

Table S5 Overview of reduction of N_2 to NH_3 by other photocatalysts.

References:

- T. Hu, G. Jiang, Y. Yan, S. Lan, J. Xie, Q. Zhang, Y. Li, Facile synthesis of Fe single-atom porous photocatalysts via direct metal atomization achieving efficient photocatalytic nitrogen fixation, *J Mater Sci Technol.* 167 (2023) 248–257.
- [2] L. Rastogi, D. Ankam, S. Yadlapalli, K. Dash, Development of microwave assisted-UV digestion using diluted reagents for the determination of total nitrogen in cereals by ion chromatography, *Curr Res Food Sci.* 4 (2021) 421–428.
- [3] W. Liu, C. Song, M. Kou, Y. Wang, Y. Deng, T. Shimada, L. Ye, Fabrication of ultrathin g-C₃N₄ nanoplates for efficient visible-light photocatalytic H₂O₂ production via two-electron oxygen reduction, *Chem. Eng. J.* 425 (2021) 130615.
- [4] H. Luo, T. Shan, J. Zhou, L. Huang, L. Chen, R. Sa, Y. Yamauchi, J. You, Y. Asakura, Z. Yuan,
 H. Xiao, Controlled synthesis of hollow carbon ring incorporated g-C₃N₄ tubes for boosting photocatalytic H₂O₂ production, *Appl Catal B-Environ*. 337 (2023) 122933.
- [5] C. Choong, C. Park, Y. Chang, J. Yang, J. Kim, S. Oh, B. Jeon, E. Choi, Y. Yoon, M. Jang, Interfacial coupling perovskite CeFeO₃ on layered graphitic carbon nitride as a multifunctional Z-scheme photocatalyst for boosting nitrogen fixation and organic pollutants demineralization, *Chem. Eng. J.* 427 (2022) 131406.
- [6] H. Luo, J. Yan, Y. Shan, J. Zhou, J. Yu, B. Boury, H. Wu, H. Xiao, L. Huang, Z. Yuan, L. Chen, Metal-free photocatalyst for nitrogen fixation under visible light based on COF/g-C₃N₄/CNT nanocomposite, *J. Environ. Chem. Eng.* 10 (2022) 107713.
- [7] X. Yu, P. Qiu, Y. Wang, B. He, X. Xu, H. Zhu, J. Ding, X. Liu, Z. Li, Y. Wang, Defect-induced charge redistribution of MoO_{3-x} nanometric wires for photocatalytic ammonia synthesis, *J*.

Colloid Interface Sci. 640 (2023) 775–782.

- [8] K. Li, C. Sun, Z. Chen, H. Qu, H. Xie, Q. Zhong, Fe-carbon dots enhance the photocatalytic nitrogen fixation activity of TiO₂@CN heterojunction, *Chem. Eng. J.* 429 (2022) 132440.
- [9] J. Wang, L. Guan, S. Yuan, J. Zhang, C. Zhao, X. Hu, B. Teng, Y. Wu, Y. He, Greatly boosted photocatalytic N₂-to-NH₃ conversion by bismuth doping in CdMoO₄: Band structure engineering and N₂ adsorption modification, *Sep. Purif. Technol.* 314 (2023) 123554.
- [10] Q. Li, Y. Shi, Z. Wang, C. Liu, J. Bi, J. C. Yu, L. Wu, Nitrogen activation and surface charge regulation for enhancing the visible-light-driven N₂ fixation over MoS₂/UiO-66(SH)₂, *J. Colloid Interface Sci.* 652 (2023) 1568–1577.
- [11] H. Zhao, J. Duan, Z. Zhang, W. Wang, High-performance gas-liquid-solid optofluidic microreactor with TiO_{2-x}-Ag@HKUST-1/carbon paper for efficient photocatalytic nitrogen fixation to ammonia, *Colloid Surface A*. 660 (2023) 130874.
- [12] K. Zhao, Y. Feng, Z. Zhang, H. Li, X. Gao, S. Lin, Enhanced spatial charge separation at surface & interface via GO/MoS₂/Ag₃PO₄ ternary Z-scheme heterostructure for nitrogen photo-fixation, *Appl Catal A-Gen.* 646 (2022) 118850.
- [13] H. Zhang, Y. Chen, L. Bao, Y.-J. Yuan, Double quantum dots decorated layer structure CeCO₃OH for improved N₂ photo-fixation, *J Catal.* 412 (2022) 1–9.
- [14] C. Liang, H. Niu, H. Guo, C. Niu, Y. Yang, H. Liu, W. Tang, H. Feng, Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride, *Chem. Eng. J.* 406 (2021) 126868.
- [15] H. Lee, J. Lee, Y. Lee, E. Cho, Y. Jang, Boosting solar-driven N₂ to NH₃ conversion using defectengineered TiO₂/CuO heterojunction photocatalyst, *Appl. Surf. Sci.* 620 (2023) 156812.

- [16] J. Wang, T. Wang, Z. Zhao, R. Wang, C. Wang, F. Zhou, S. Li, L. Zhao, M. Feng, Regulation of oxygen vacancies in SrTiO₃ perovskite for efficient photocatalytic nitrogen fixation, *Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics*, 902 (2022) 163865–163872.
- [17] J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang, W. Lu, J. Wang, J.C. Yu, High-efficiency "workingin-tandem" nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets, *J. Am. Chem. Soc.*, 140 (2018) 8497.
- [18] G. Ren, M. Shi, S. Liu, Z. Li, Z. Zhang, X. Meng, Molecular-level insight into photocatalytic reduction of N₂ over Ruthenium single atom modified TiO₂ by electronic metal-support interaction, *Chem. Eng. J.* 454 (2023) 140158.
- [19] W. Gao, X. Li, S. Luo, Z. Luo, X. Zhang, R. Huang, M. Luo, In situ modification of cobalt on MXene/TiO₂ as composite photocatalyst for efficient nitrogen fixation, *J. Colloid Interface Sci.* 585 (2021) 20–29.
- [20] J. Li, D. Wang, R. Guan, Y. Zhang, Z. Zhao, H. Zhai, Z. Sun, Vacancy-enabled mesoporous TiO₂ modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance, ACS Sustain. Chem. Eng. 8 (2020) 18258–18265.
- [21] Y. Zhang, X. Chen, S. Zhang, L. Yin, Y. Yang, Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm, *Chem. Eng. J.* 401 (2020) 126033.
- [22] C. Lee, H. Kim, Y.J. Jang, Three phase boundary engineering using hydrophilic-hydrophobic poly (N-isopropylacrylamide) with oxygen-vacant TiO₂ photocatalysts for photocatalytic N₂ reduction, ACS Appl. Energy Mater. 5 (2022) 11018–11024.
- [23] S. Liu, Y. Wang, S. Wang, M. You, S. Hong, T.-S. Wu, Y.-L. Soo, Z. Zhao, G. Jiang, J. Qiu,

Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO₂ nanosheets, ACS Sustain. Chem. Eng. 7 (2019) 6813–6820.

- [24] Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO₂ nanosheets to boost photocatalytic nitrogen fixation up to 700 nm, *Adv. Mater.*, 31 (2019) 1806482.
- [25] X. Bian, Y. Zhao, S. Zhang, D. Li, R. Shi, C. Zhou, L.Z. Wu, T. Zhang, Enhancing the supply of activated hydrogen to promote photocatalytic nitrogen fixation. ACS Mater. Lett., 3 (2021) 1521– 1527.