Enhancing CO₂ gasification-reforming of municipal solid waste with

Ni/CeO₂ and Ni/ZrO₂ catalysts

Shiyu Zhang^{a,b}, Yibing Peng^{a,b}, Mengna Wu^{a,b}, Qinghai Li^{a,b}, Yanguo Zhang^{a,b,*}, Hui Zhou^{a,b,*}

^aKey Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO₂ Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China

^bShanxi Research Institute for Clean Energy, Tsinghua University, Shanxi, Taiyuan 030000, P.R. China

*Corresponding author: zhangyg@tsinghua.edu.cn (YG), huizhou@tsinghua.edu.cn (HZ)

Fig. S1. The gas production rate of cabbage during CO_2 gasification-reforming with (a) 5%Ni/CeO₂ and (b) 5%Ni/ZrO₂ catalysts.

Fig. S2. The gas production rate of poplar leaves during CO₂ gasification-reforming

with (a) 5%Ni/CeO₂ and (b) 5%Ni/ZrO₂ catalysts.

Fig. S3. The gas production rate of printed paper during CO₂ gasification-reforming with (a) 5%Ni/CeO₂ and (b) 5%Ni/ZrO₂ catalysts.

Fig. S4. The gas production rate of PET during CO_2 gasification-reforming with (a)

 $5\%Ni/CeO_2$ and (b) $5\%Ni/ZrO_2$ catalysts.

Fig. S5. The gas production rate of HDPE during CO₂ gasification-reforming with (a)

5%Ni/CeO₂ and (b) 5%Ni/ZrO₂ catalysts.

Fig. S6. SEM images of (a) CeO₂ and (b) ZrO₂ supports.

Fig. S7. N_2 adsorption-desorption isotherms of catalysts: (a) CeO₂, (b) ZrO₂, (c) 5%Ni/CeO₂, and (d) 5%Ni/ZrO₂.

Fig. S8. HR-TEM images of (a) 5%Ni/CeO2 and (b) 5%Ni/ZrO2 catalysts.

Fig. S9. Characterization of used catalyst after 5 cycles: (a) TGA experiments of the used 5%Ni/CeO₂ catalysts under air atmosphere at the heating rate of 10 °C min⁻¹ and (b) morphology of carbon nanotubes on used 5%Ni/CeO₂ catalysts.

	Proximate analysis (wt.%, dry basis)			Ultimate analysis (wt.%, dry ash-free basis)				
Municipal solid waste								
	А	V	FC	С	Н	0	N	S
PET	0.1	90.4	9.5	63.0	4.3	32.7	0.0	0.0
HDPE	0.0	100.0	0.0	86.0	11.2	2.6	0.2	0.0
Cabbage	9.9	67.6	22.5	47.5	5.9	41.8	4.1	0.7
Poplar leaf	15.7	68.7	15.6	49.6	5.2	43.3	1.3	0.6
Printed paper	10.7	79.3	10.0	45.1	5.3	0.4	48.9	0.3

Table S1 Proximate and ultimate analyses of the municipal solid waste components.

A: ash; V: volatile; FC: fixed carbon. The O content was calculated by difference.

Table S2 Comparison of gas yields of HDPE under N_2 and CO_2 atmospheres with and

Atmosphere, Catalyst	H ₂	CH ₄	СО
N ₂ , No catalyst	1.5	4.2	0.1
CO ₂ , No catalyst	1.7	4.7	0.1
N ₂ , 5%Ni/CeO ₂ catalyst	1.9	4.4	0.2
CO ₂ , 5%Ni/CeO ₂ catalyst	8.5	2.9	31.7

without 5%Ni/CeO₂ catalysts.

 Catalysts
 Nominal loading (wt%)
 Actual loading (wt%)

 2%Ni/CeO2
 2
 1.9

 5%Ni/CeO2
 5
 5.3

 10%Ni/CeO2
 10
 9.4

Table S3 Nominal and actual loading of Ni (determined by ICP-AES) in the Ni/CeO₂

catalysts.