Supporting Information

Graphene Nanoribbons/Ru as Efficient Cathodic Catalysts for High-Performance Rechargeable Li-CO₂ Batteries

Xiaoling Ye,^a Wencheng Liu,^a Yan Lu,^b Xiaoxiao Zheng,^a Yijian Bi,^a Min Zheng,^c Lei Han,^a Benqing Liu,^a Yafei Ning,^{a,d} Syed Hassan Mujtaba Jafri,^{e,f} Xinyu Zhao,^{*g} Shangming He ^{*h} Shilin Zhang^{*c} and Hu Li^{*a,d}

^a Shandong Technology Centre of Nanodevices and Integration, School of Integrated circuit, Shandong University, Jinan 250101, China.

^b State Key Lab of High Performance Ceram and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, P.R. China.

^c School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia.

^d Shenzhen Research Institute of Shandong University, Shenzhen, 518063, China.

^e Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur Azad Jammu and Kashmir 10250, Pakistan.

^f Department of Materials Science and Engineering Uppsala University, 75121 Uppsala, Sweden.

^g Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, People's Republic of China.

^h Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute (SARI), and Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), 201204 Shanghai, P. R. China.

Table S1. Comparison of GNR Conductivity Before and After Annealing

	Temperature (°C)	Resistivity (Ω ·cm)	Conductivity (S cm ⁻¹)
Before Annealing	25	0.085	11.764
After Annealing	25	0.043	23

Fig. S1 N₂ adsorption–desorption isotherms of GNR (inset is the pore size distribution).

Fig. S2 Full X-ray photoelectron spectroscopy of GNR.

Fig. S3 Full X-ray photoelectron spectroscopy of GNR/Ru.

Fig. S4 N₂ adsorption–desorption isotherms of GNR/Ru catalyst.

Fig. S5 (a) Fitting of the magnitude of theFourier transform of the k^2 -weighted EXAFS and (b) the corresponding k^2 -weighted oscillation fitting curves (data-blue and fit-red) for Ru foil.

Sample	Path	CN ^a	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor		
Ru K-edge (S_0^2 =0.905)								
Ru foil	Ru-Ru	12*	2.672±0.003	0.0041	-5.0	0.0052		
GNR/Ru	Ru-C	3.7±0.8	2.026±0.012	0.0015	-12.25	0.0038		
	Ru-Ru	5.1±0.4	2.668±0.003	0.0032	-3.3			

Table S2. EXAFS data fitting results of Samples.

^{*a*}*CN*, coordination number; ^{*b*}*R*, the distance between absorber and backscatter atoms; ^{*c*} σ^2 , the Debye Waller factor value; ^{*d*} ΔE_0 , inner potential correction to account for the difference in the inner potential between the sample and the reference compound; *R* factor indicates the goodness of the fit. S_0^2 was fixed to 0.905, according to the experimental EXAFS fit of Ru foil by fixing *CN* as the known crystallographic value. * This value was fixed during EXAFS fitting, based on the known structure of Ru. Fitting conditions: *k* range: 3.0 - 14.0; *R* range: 1.0 - 3.0; fitting space: R space; *k*-weight = 2. A reasonable range of EXAFS fitting parameters: 0.800 < S_0^2 < 1.000; *CN* > 0; σ^2 > 0 Å²; $|\Delta E_0| < 15$ eV; *R* factor < 0.02.

Fig. S6 Full discharge profiles of catalyst-free carbon paper.

Fig. S7 Selected discharge-charge curves for LCBs with the GNR cathode.

Fig. S8 Selected discharge-charge curves for LCBs with the SWCNT cathodes.

Fig. S9 Cycling overpotentials of (a) GNR/Ru, GNR and (b) SWCNT.

Fig. S10. SEM images of GNR/Ru cathode after long cycles.

Fig. S11 Raman spectra of (a) Cathode and (b) Separator at different charging voltage.

Cathodes	Discharge capacity		Battery operation	References
Material	(mAh g ⁻¹)	(mAh g ⁻¹)		
GNR/Ru	11470	1.34	1240	This work
	(100 mA g ⁻¹)	(100 mA g ⁻¹)	(100 mA g ⁻¹)	
CNT/Ru	4541	1.24 V	450	[1]
	(100 mA g ⁻¹)	(100 mA g ⁻¹)	(100 mA g ⁻¹)	
RuCo/CNFs		0.98	360	[2]
		(100 mA g ⁻¹)	(500 mA g ⁻¹)	
Ru/ACNFs		1.35	1000	[3]
		(100 mA g ⁻¹)	(100 mA g ⁻¹)	
CNT@RuO ₂	2187	~1.4	1100	[4]
	(50 mA g^{-1})	(100 mA g^{-1})	(50 mA g^{-1})	
NiPc-CN MDE	18000	1.4	1200	[5]
	(200mA g ⁻¹)	(50 mA g ⁻¹)	(50 mA g ⁻¹)	
Co _{0.1} Ni _{0.9} O _x /CNT	5871.41	1.27	500	[6]
	(100 mA g ⁻¹)	(100 mA g ⁻¹)	(100 mA g ⁻¹)	
Au/CNT	6399	1.53	460	[7]
	(100 mA g ⁻¹)	(100 mA g ⁻¹)	(200 mA g ⁻¹)	
MXene/GO	18326	2.4	430	[8]
	(100 mA g ⁻¹)	(100 mA g^{-1})	(100 mA g^{-1})	
$Ti_3C_2T_x$		1.38	1000	[9]
MXene/CNT		(200 mA g ⁻¹)	(200 mA g ⁻¹)	
Cu-NG		0.77	500	[10]
		(100 mA g ⁻¹)	(200 mA g ⁻¹)	
NG/RGO		2.21	390	[11]
		(500 mA g ⁻¹)	(500 mA g ⁻¹)	
CQD/hG	12300	1.02	235	[12]
	(50 mA g^{-1})	(100 mA g^{-1})	(1.0 A g^{-1})	
α -MnO ₂ /CNT	7134.1	1.4	1000	[13]
	(50 mA g^{-1})	(100 mA g^{-1})	(100 mA g^{-1})	

Table S3. The electrochemical performances comparisons of different LCBs reported in the literature.

Fig. S12 GNR cathodes at different current densities.

References

- K. V. Savunthari, C.-H. Chen, Y.-R. Chen, Z. Tong, K. Iputera, F.-M. Wang, C.-C. Hsu, D.-H. Wei, S.-F. Hu and R.-S. Liu, ACS Applied Materials & Interfaces, 2021, 13, 44266-44273.
- 2. Y. Jin, F. Chen and J. Wang, ACS Sustainable Chemistry & Engineering, 2020, 8, 2783-2792.
- 3. Y. Qiao, S. Xu, Y. Liu, J. Dai, H. Xie, Y. Yao, X. Mu, C. Chen, D. J. Kline, E. M. Hitz, B. Liu, J. Song, P. He, M. R. Zachariah and L. Hu, *Energy & Environmental Science*, 2019, **12**, 1100-1107.
- 4. S. Bie, M. Du, W. He, H. Zhang, Z. Yu, J. Liu, M. Liu, W. Yan, L. Zhou and Z. Zou, *ACS Applied Materials & Interfaces*, 2019, **11**, 5146-5151.
- 5. H. Zheng, H. Li, Z. Zhang, X. Wang, Z. Jiang, Y. Tang, J. Zhang, B. Emley, Y. Zhang, H. Zhou, Y. Yao and Y. Liang, *Small*, 2023, **19**, 2302768.
- M. S. Choi, A. Nipane, B. S. Y. Kim, M. E. Ziffer, I. Datta, A. Borah, Y. Jung, B. Kim, D. Rhodes, A. Jindal, Z. A. Lamport, M. Lee, A. Zangiabadi, M. N. Nair, T. Taniguchi, K. Watanabe, I. Kymissis, A. N. Pasupathy, M. Lipson, X. Zhu, W. J. Yoo, J. Hone and J. T. Teherani, *Nature Electronics*, 2021, 4, 731-739.
- 7. Y. Kong, H. Gong, L. Song, C. Jiang, T. Wang and J. He, *European Journal of Inorganic Chemistry*, 2021, **2021**, 590-596.
- 8. A. Bharti, G. Manna, P. Saha, G. Achutarao and A. J. Bhattacharyya, *The Journal of Physical Chemistry Letters*, 2022, **13**, 7380-7385.
- 9. Z. Hu, Y. Xie, D. Yu, Q. Liu, L. Zhou, K. Zhang, P. Li, F. Hu, L. Li, S. Chou and S. Peng, *ACS Nano*, 2021, **15**, 8407-8417.
- 10. Z. Zhang, Z. Zhang, P. Liu, Y. Xie, K. Cao and Z. Zhou, *Journal of Materials Chemistry A*, 2018, **6**, 3218-3223.
- 11. B. Chen, D. Wang, B. Zhang, X. Zhong, Y. Liu, J. Sheng, Q. Zhang, X. Zou, G. Zhou and H.-M. Cheng, *ACS Nano*, 2021, **15**, 9841-9850.
- 12. Y. Jin, C. Hu, Q. Dai, Y. Xiao, Y. Lin, J. W. Connell, F. Chen and L. Dai, *Advanced Functional Materials*, 2018, **28**, 1804630.
- 13. D. Lei, S. Ma, Y. Lu, Q. Liu and Z. Li, *Journal of Electronic Materials*, 2019, **48**, 4653-4659.