Supporting Information for Machine-Learning Assisted High-Throughput Discovery of Solid-State Electrolytes for Li-ion Batteries

Xingyu Guo,^{*,†} Zhenbin Wang,^{‡,¶} Ji-Hui Yang,[†] and Xin-Gao Gong^{*,†}

†Department of Physics, Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China

[‡]Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China

¶School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China

E-mail: xguo@fudan.edu.cn; xggong@fudan.edu.cn

Li⁺ conductivity of known lithium-ion conductors

Material	Exp. (mS/cm)	Ref
$\mathrm{Li}_4\mathrm{P}_2\mathrm{S}_6$	$2.38 \ge 10^{-4}$	1
$LiZnPS_4$	$\sim 10^{-4}$	2
$\mathrm{Li}_{10}\mathrm{GeP}_{2}\mathrm{S}_{12}$	12	3
$\rm Li_{10}SiP_2S_{12}$	2.3	4
$\mathrm{Li}_{10}\mathrm{SnP}_{2}\mathrm{S}_{12}$	4	5
$\mathrm{Li}_{7}\mathrm{P}_{3}\mathrm{S}_{11}$	1.5	6
$\rm Li_{10}Si_{1.5}P_{1.5}S_{11.5}Cl_{0.5}$	25	7
$\rm Li_6PS_5Cl$	3.15	8
$Li_7La_3Zr_2O_{12}$ (LLZO)	$\sim 10^{-1}$	9
$Li_2La_2Ti_3O_{10}$ (LLTO)	$\sim 10^{-2}$	10
$\mathrm{Li}_{3}\mathrm{OCl}_{0.5}\mathrm{Br}_{0.5}$	~ 1	11
$\rm Li_3YCl_6$	0.51	12
Li_3YBr_6	1.70	12
$LiFePO_4$	$10^{-8} \sim 10^{-7}$	13,14
NCM111	$10^{-2} \sim 10^{-3}$	15
$LiCoO_2$	$10^{-2} \sim 1$	16–18

Table S1: Li⁺ conductivity of selected known lithium-ion conductors.

Benchmark of electronic band gaps

Table S2: Calculated band gaps of common solid-state electrolytes, obtained from density functional theory (DFT) calculations, using the Perdew–Burke–Ernzerhof (PBE) and Heyd–Scuseria–Ernzerhof (HSE) functionals, and machine-learning (ML) predictions using the HSE 4-fi-MEGNet model.

material	$E_g (eV)$						
materiar	DFT-PBE	DFT-HSE	ML-HSE				
$\mathrm{c-Na_3PS_4}$	2.29	3.38	3.17				
$LiZnPS_4$	2.73	3.86	3.69				
$LiAl(PS_3)_2$	2.75	3.74	3.58				
$\mathrm{Li}_4\mathrm{P}_2\mathrm{S}_6$	0	-	3.27				
$\rm Li_{10}GeP_2S_{12}$	2.06	-	3.14				
$\mathrm{Li}_{10}\mathrm{SiP}_{2}\mathrm{S}_{12}$	2.38	-	3.54				
$\rm Li_{10}SnP_2S_{12}$	2.0	-	3.16				
$\mathrm{Li}_{7}\mathrm{P}_{3}\mathrm{S}_{11}$	2.41	-	3.44				
$\mathrm{Li}_5\mathrm{PS}_4\mathrm{Cl}_2$	2.78	3.57	3.57				
$\rm Li_{10}Si_{1.5}P_{1.5}S_{11.5}Cl_{0.5}$	2.31	-	3.56				
$\mathrm{Li}_{3}\mathrm{PS}_{4}$	2.81	-	3.44				
$Li_7La_3Zr_2O_{12}$ (LLZO)	4.33	4.12	5.43				
$Li_2La_2Ti_3O_{10}$ (LLTO)	2.84	3.34	3.33				

Statistics of screening process

Figure S1: Histogram of numbers of compounds for each category that pass each filter in the high-throughput identification.

Table S3: Statistical analysis of lithium-based compounds from the Inorganic Crystal Structure Database(ICSD), Materials Project and Mattaverse database. This analysis quantifies the materials from the Materials Project and Mattaverse database that meet the phase stability screening criterion, defined as energy above the hull (E_{hull-m}) being less than 30 meV/atom. The analysis was limited to ordered structures only.

	ICSD	Materials Project	Mattaverse
Oxides	$1,\!497$	3,258	13,097
Sulfides	110	206	38,735
Fluorides	157	320	3,382
Chlorides	47	98	6,767
Bromides	29	47	8,624
Alloys	260	756	556
Others	789	594	448

Tree-based Classification Model on Li⁺ conductivities

Leveraging the dataset (10,769 data point) produced in our high-throughput calculations, we developed a machine learning tree-based classification model to elucidate the structurechemistry-conductivity relationship. According to our benchmark results, solid electrolytes with an $MSD_{800K} > 5 \text{ Å}^2$ demonstrate baseline Li⁺ conductivities. We thus classified the candidates into two groups : materials with MSD_{800K} below 5 Å^2 are designated as having no Li⁺ conduction (Probability of Li⁺ conduction = 0), while materials with MSD_{800K} exceeding 5 Å^2 are identified as dispalying baseline Li⁺ conductivity (Probability of Li⁺ conduction = 1).

87 physically-informed features were created for each material to describe their properties of composition, crystal structure and crystal sites. For example, the channel size of Li⁺ is characterized by the maximum packing efficiency, the packing fraction and volume of the given material. Maximum packing efficiency is defined as the maximum spatial occupancy of an atom within its local environment in a crystal structure. This efficiency is quantified by $\sum_{N} \frac{4}{3} \cdot \pi \cdot r_{max}^3$, where V represents the volume of the structure, N is the number of sites in the structure, and r_{max} is the radius of the largest possible atom for each site. The value of r_{max} is determined by the distance from the center of the cell to the nearest Voronoi face.¹⁹ The packing fraction evaluates the ratio of the volume occupied by atoms to the total crystal lattice volume, calculated as $\sum_{N} \frac{4}{3} \cdot \pi \cdot r_{atomic}^3$, with r_{atomic} denoting the atomic radius of each atom in the structure. The connectivity of the channel size for Li⁺ within a structure is derived from its volume and packing fraction. A higher packing fraction indicates less void space within the structure, potentially decreasing the connectivity of Li⁺ conduction channels. In contrast, a larger volume suggests more void space, implying enhanced connectivity for Li⁺ conduction channels.

For features exhibiting a high degree of correlation with one another—specifically, those with a Pearson correlation coefficient greater than 0.75—the feature yielding better performance was selected to construct the model, as shown in Figure S2. The developed classification model demonstrates an accuracy score of 0.975 and a Jaccard score of 0.962, indicating its high accuracy in distinguishing Li⁺ baseline conductivities.

Figure S2: Calculated Pearson correlation coefficients of the pairs of features. The features are 1.Li-O bond fraction; 2.Li-S bond fraction; 3.Li-F bond fraction; 4.Li-Cl bond fraction; 5.Li-Br bond fraction; 6.Density; 7.Volume per atom; 8.Packing fraction; 9.Maximum packing efficiency; 10.Structural complexity per cell; 11.HOMO energy; 12.LUMO energy; 13. Atomic orbitals; 14. Average number of s valence electrons; 15. Average number of p valence electrons; 16. Average number of d valence electrons; 17. Average number of f valence electrons; 18. Fraction of s valence electrons; 19. Fraction of p valence electrons; 20. Fraction of d valence electrons; 21. Fraction of f valence electrons; 22. Transition metal fraction; 23.Stoichiometry 0-norm; 24.Band center; 25.MagpieData mean atomic weight; 26.Mean melting T; 27.Mean covalent radius; 28.Mean electronegativity; 29.Mean number of s valence electrons; 30.Mean number of p valence electrons; 31.Mean number of d valence electrons; 32.Mean number of f valence electrons; 33.Mean number of valence electrons; 34.Mean number of unfilled s orbitals; 35.Mean number of unfilled p orbitals; 36.Mean number of unfilled d orbitals;; 37.Mean number of unfilled orbitals; 38.Ground state volume per atom; 39.Mean ground state bandgap; 40.Mean ground state magmom; 41.Average bond length Li-X; 42.Mean Li interstice area; 43.Mean Li interstice volume; 44.Coordination number; 45.Minimum oxidation state; 46.Maximum oxidation state; 47.Range of oxidation state; 48.Standard deviation of oxidation state; 49.Maximum ionic charge; 50.Average ionic charge; 51. Average anion electron affinity; 52. Mean electronegativity difference

Figure S3: Partial dependence plots illustrating the influence of different features, (a) Maximum packing efficiency, (b) Packing fraction, (c) Volume per atom, and (d) Electronegativity difference, on the classification of Li⁺ diffusions. The accompanying histogram displays the frequency distribution of the datasets according to the feature values.

According to Figure S3, it is found that sulfides have in general larger volume than oxides and fluorides, suggesting that sulfides are more likely to form connected Li⁺ diffusion channels. Meanwhile, sulfides exhibit the smallest mean electronegativity difference with respect to Li, indicating minimized interactions of Li⁺ with neighboring anions while hopping. Similarly, chlorides and bromides also tend to form crystals with large volumes, enabling fast Li⁺ transportation. In contrast, oxides and fluorides tend to form crystals with relatively small volume, which may reduce the connection between individual Li⁺ diffusion channels. The large mean electronegativity difference in fluorides may result in sluggish Li⁺ diffusion. Therefore, the likelihood of finding fast Li⁺ conductors is higher in sulfides, chlorides, and bromides than it is in oxides and fluorides.

Structure prototypes of the 130 identified promising can-

didate materials.

Table S4: Structure prototypes for the 130 promising candidate materials for solid electrolytes are represented in two ways: (i) the parent structure from which the candidate materials are derived through substitution; and (ii) the structure type of the parent structure as listed in the Inorganic Crystal Structure Database (ICSD).^{20,21} The symbol '—' denotes the absence of a structure type in the ICSD.

Promising candidates			Parent Struc			
Material	Space group	Material ID	Material	ICSD ID	Structure type	
LiCl	$\mathbf{D}_{\mathbf{C}} \mathbf{D}_{\mathbf{C}} \mathbf{D}_{\mathbf{C}} (100)$	mp-1185319	-1185319 LiCl			
LiBr	P6_3mc(186)	mv-25910967	LiBr	_	-	
$\rm Cs_2 Li Sc Cl_6$	Fm-3m(225)	mp-1113004	$\rm Cs_2 Li Sc Cl_6$	-	_	
$\rm SrLi_2SiO_4$	D (C2)	mv-25910959	I. C.16.0	1110	L: DO	
$SrLi_2GeO_4$	Pnma(62)	mv-25910967	$L_{12}CdSlO_4$	1113	$L_{13}PO_4$	
$SrLiLuCl_6$	$P2_{-1}/m(11)$	mv-23258662	$\rm KHoBeF_6$	2143	_	
$LiLuCl_4$	P2_12_12_1(19)	mv-31579856	$NaAlCl_4$	2307	$NaAlCl_4$	
$\rm SrLiScCl_6$		mv-23989007				
$\rm SrLiScBr_6$		mv-23989008		5007	${ m Na_2SiF_6}$	
$\rm SrLiLuBr_6$	P321(150)	mv-23989089	$LiMgAlF_6$			
BaLiLuCl ₆		mv-23989643				
$\rm SrLiLuCl_6$		mv-23989088				
${\rm Li}_2{\rm BeF}_4$	I-4(82)	mv-5203013	Ag_2HgI_4	6069	$\mathrm{CdAl}_2\mathrm{S}_4\#\mathrm{CdGa}_2\mathrm{S}_4$	
${ m Rb}_2{ m LiYBr}_6$		mv-28307133				
$\mathrm{NaLi}_{2}\mathrm{LuBr}_{6}$	P-3m1(164)	mv-28300644	$\rm Cs_2 LiGaF_6$	9004	_	
$K_2LiScBr_6$		mv-28304448				
${\rm LiH_3O_2}$	C2/m(12)	mp-27281	${\rm LiH_3O_2}$	9138	$\rm LiOHH_2O$	
$\rm LiLu_2Cl_7$	CO(17)	mv-19344575		1 41 1 0		
$LiAl_2F_7$	C2/c(15)	mv-19344508	CSSD ₂ F ₇	14119	$\mathrm{CsSb}_{2}\mathrm{F}_{7}$	
$\rm Li_4Ca_2Si_3O_{10}$	C2/c(15)	mv-13090933	$\mathrm{Na}_4\mathrm{Cd}_2\mathrm{Si}_3\mathrm{O}_{10}$	20185	$Na_4Cd_2Si_3O_{10}$	
$ m Rb_3LiCaBr_6$	R-3m(166)	mv-16033288	${ m K_3NaFeCl}_6$	23182	$K_4 CdCl_6$	
$LiB(HO)_4$	Pbca(61)	mp-23662	$LiB(HO)_4$	23837	$LiB(OH)_4$	

Promising candidates		Parent Strue	Cu u u			
Material	Space group	Material ID Material		ICSD ID	Structure type	
LiLuCl ₄	$P2_{-}1/c(14)$	mv-31586317	$NaSbF_4$	24750	$LaTaO_4$	
$CsLiCl_2$	C (02)	mv-31595624	מידות	00710		
KLiCl_2	$\operatorname{Cmcm}(63)$	mv-31595564	RbLiBr ₂	30719	RbLiBr2	
$\mathrm{KLi}_7(\mathrm{SiO}_4)_2$		mv-8803250				
$\mathrm{Rb}_{7}\mathrm{LiHf}_{2}\mathrm{O}_{8}$	$O_2 / (10)$	mv-8805837	$\mathbf{D}(\mathbf{I}, \mathbf{Q}, \mathbf{Q})$	22064		
$NaLi_7(GeO_4)_2$	C2/m(12)	mv-8803210	$RDL1_7(S1O_4)_2$	33804	-	
$\mathrm{KLi}_7(\mathrm{GeO}_4)_2$		mv-8803254				
$LiLuCl_4$	P2/c(13)	mv-31568835	${ m LiAuF_4}$	33953	-	
$ m K_2LiLuBr_6$	Pa-3(205)	mv-28933317	$\rm K_2NaAlF_6$	34201	Ba_2CrUO_6	
$\rm Li_3ScCl_6$	$D_{22} = 0.1(99)$	mv-22830798		24670		
$\rm Li_3LuCl_6$	$Pna2_{-1}(55)$	mv-22830879	$L_{13}AIF_6$	34072	-	
$\mathrm{K}_{3}\mathrm{LiSiS}_{4}$	$P2_1/c(14)$	mv-15996940	$\rm Rb_3NaPbO_4$	35416	$\rm Rb_3NaTiO_4$	
$\rm SrLiScBr_6$		mv-24115725				
$\rm SrLiLuBr_6$	DC 200/100)	mv-24115806		26520		
${\rm BaLiScCl}_6$	P0_322(182)	mv-24116279	LISIIIAIF ₆	00000	LISIIIAIF ₆	
$\operatorname{BaLiLuCl}_6$		mv-24116360				
$\rm LiLu_2 Cl_7$	$P2_1/c(14)$	mv-20883250	$\mathrm{KDy}_2\mathrm{Cl}_7$	37007	-	
${\rm Li}_3{\rm Lu}_2{\rm Br}_9$	P321(150)	mv-15922265	$\mathrm{Cs}_3\mathrm{As}_2\mathrm{Cl}_9$	45733	$Cs_3Bi_2Cl_9(hP14)$	
$\mathrm{K}_{5}\mathrm{Li}(\mathrm{SiS}_{3})_{3}$	$P2_{-1}/m(11)$	mv-15353762	$\rm Cs_5Si_3AgO_9$	51508	_	
$RbLi_2Cl_3$	D9.1/m (11)	mv-18416575	$C_{\alpha}C_{\alpha}$ IC_{α}	60060	ShDO //ShAcO	
$CsLi_2Cl_3$	$P_{2_{-1}/III(11)}$	mv-18417331	$OSOU_2IOI_2$	00900	$SDPO_4 \# SDASO_4$	
$\rm Rb_5 Li Be_8 S_{11}$	P-1(2)	mv-15858566	$\rm RbNa_5Be_8O_{11}$	65482		
${\rm Li}_{3}{\rm LuCl}_{6}$		mv-23180659				
${\rm Li}_3{\rm ScBr}_6$	P-31m(162)	mv-23179688	$\rm NbHg_3F_6$	62027	${ m Hg_3NbF_6}$	
${\rm Li}_{3}{\rm LuBr}_{6}$		mv-23180660				
$\rm LiSc_6Tl_2Br_{21}$		mv-7289445				
$Na_2Li(Sc_2Br_7)_3$		mv-7289436				
$\mathrm{NaLi}_2(\mathrm{Sc}_2\mathrm{Br}_7)_3$	CO(E)	mv-7289447	Dh Ng Al E	GOEEE		
$Na_2LiLu_6Br_{21}$	$\mathbb{O}^{2}(\mathfrak{d})$	mv-7301100	пu ₂ тvaAl ₆ r ₂₁	66600	-	

Table S4: Continued

Promising candidates			Parent Structures		<u>Ct</u>
Material	Space group	Material ID	Material	ICSD ID	Structure type
$NaLi_2Lu_6Br_{21}$		mv-7301111			
$\mathrm{KLi}_2(\mathrm{Sc}_2\mathrm{Br}_7)_3$		mv-7289471			
$\rm Sr_2LiLuCl_8$		mv-26367164			
$Sr_2LiLuBr_8$	$P2_{-}1/c(14)$	mv-26367165	$\rm NaSr_2 CrF_8$	69032	-
$Ba_2LiLuBr_8$		mv-26367720			
NaLi ₂ PO ₄	D ((22)	mp-558045	N L' DO	c0000	L: DO
K_2 LiTaO ₄	Pnma(62)	mv-26169630	$NaLi_2PO_4$	69967	$L_{13}PO_4$
$NaLiHfF_6$	Pnma(62)	mv-23751362	KNaSiF_6	71334	KNaSiF_6
$LiScBr_4$	$P2_{-}1/c(14)$	mv-31583403	$NaMnF_4$	71455	${ m LiMnF}_4$
$SrLiScCl_6$		mv-24237717			
$SrLiScBr_6$	Do 10 10 1(10)	mv-24237718	NODD	71577	$Nd_2WO_6(oP36)$
BaLiLuCl ₆	P2_12_12_1(19)	mv-24238353	NaSrFeF ₆		
${\operatorname{BaLiLuBr}_6}$		mv-24238354			
${ m Rb}_4{ m LiNbO}_5$	P-1(2)	mv-955162	$\rm KLi_4 NbO_5$	73124	_
$Ba_7Li_2Lu_6Cl_{34}$	(12)/(12)	mv-16242402		70400	
$Sr_7Li_2Lu_6Cl_{34}$	C2/m(12)	mv-16242397	$Na_2Sr_7Al_6F_{34}$	(8488	-
$SrLiLuCl_6$	D (60)	mv-24203184		00550	
BaLiLuCl ₆	Pnma(62)	mv-24203199	NaAlCdF ₆	80559	-
$Na_2Li(ScBr_4)_3$		mv-6302369			
Na ₂ LiLu ₃ Br ₁₂	C2/c(15)	mv-6302396	$\mathrm{Cs}_2\mathrm{KMn}_3\mathrm{F}_{12}$	83873	-
$K_2Li(ScBr_4)_3$		mv-6305033			
$\mathrm{Cs}_4\mathrm{Li}_2\mathrm{Al}_4\mathrm{S}_9$	P-1(2)	mv-16124360	$\rm K_2Dy_4Cu_4S_9$	97562	$\rm K_2Dy_4Cu_4S_9$
$LiInO_2$	P-1(2)	mv-27283190	AgCO_2	109601	$Ag_2C_2O_4$
${\rm Li}_{2}{\rm HfCl}_{6}$	C2/c(15)	mv-28216780	$\rm Li_2ZrF_6$	155020	-
$SrLiScCl_6$		mv-24018901			
$SrLiLuCl_6$		mv-24018982		10-0-0	
$\rm SrLiScBr_6$	D4 9 (100)	mv-24018902	T : N / N / T		L:17- 17
$SrLiLuBr_6$	$r_{4_2nm(102)}$	mv-24018983	LIIVIN V F ₆	10/0/3	L1Fe ₂ F ₆
$LiCaScBr_6$		mv-24017903			

Table S4: Continued

Promising candidates		Parent Structures		Ci i i		
Material	Space group	Material ID	Material	ICSD ID	Structure type	
BaLiLuCl ₆		mv-24019537				
KLiSiO_3	Iba2(45)	mv-27371981	$\rm TlAgTeO_3$	169995	-	
$SrLi(BO_2)_3$	P-1(2)	mv-17202210	$KZn(BO_2)_3$	174357	$KZnB_{3}O_{6}$	
$\rm SrLi_2 GeO_4$	$P2_{-}1/c(14)$	mv-25943051	$\rm Li_2FeSiO_4$	186519	-	
$\rm Li_2CaBr_4$	Ama2(40)	mv-20014595	$Rb_2Cd(IBr)_2$	194236	Sr_2GeSe_4	
$LiLu_3F_{10}$	$P222_{-1}(17)$	mv-8011123	${\rm RbIn_3F_{10}}$	200052	-	
$\rm Li_2LuBr_2Cl_3$	P-1(2)	mv-5349815	$Rb_2SbCl_3F_2$	200497	-	
$\rm LiLuBr_4$	$P2_{-}1/c(14)$	mv-31587649	NaSbF_4	200573	$\rm LiTaO_4$	
$LiLuCl_4$	$P2_{-}1/c(14)$	mv-31635209	TlSbF_4	201084	-	
${\rm Li}_{2}{\rm HfF}_{6}$	D0.1/(1.4)	mv-22716062		001602	C D E	
${\rm Li}_{2}{\rm HfClF}_{5}$	$P2_1/c(14)$	mv-22716067	K ₂ TeClF ₅	201603	$\operatorname{Sn}_3\mathrm{BrF}_5$	
KLi_2ScBr_6	$C_{0}/(1r)$	mv-28459714		001002		
$ m K_2LiLuBr_6$	C2/C(15)	mv-28471345	$\text{USK}_2\text{BiUl}_6$	201983		
$\rm Rb_5LiZr_2S_7$	C2/c(15)	mv-12207323	$\rm Na_5AgGe_2S_7$	237455	$Na_6Ge_2Se_7$	
${ m LiScBr}_4$	$C_{2}/_{-}(17)$	mv-31284828	000455			
$LiLuCl_4$	$C_2/C(15)$	mv-31285788	ALLIF ₄	202455	MH_4AIF_4	
$Sr_3Li_2Lu_2Cl_{14}$	19, 19(100)	mv-3242974		000017		
$\mathrm{Ba_3Li_2Lu_2Cl_{14}}$	12_13(199)	mv-3243154	$Ma_2 Ca_3 Al_2 F_{14}$	202057	-	
$\mathrm{K}_{3}\mathrm{Li}_{2}\mathrm{F}_{5}$	Fmm2(42)	mv-9126917	$\mathrm{Cs}_3\mathrm{Li}_2\mathrm{F}_5$	245964	-	
$\rm Rb_2Li_3Br_5$	$\Lambda mm \Omega(20)$	mv-8407962		245066		
$Rb_2Li_3Cl_5$	$\operatorname{Amm2}(38)$	mv-8407950	$OS_2 LI_3 F_5$	245900	-	
$\mathrm{Rb}_{2}\mathrm{Li}_{3}\mathrm{Br}_{5}$	Imm2(44)	mv-7977990	$\rm Cs_2Li_3Cl_5$	245973	_	
$\rm RbLi_3Br_4$	Cmcm(63)	mv-22499633	$\rm CsLi_3Cl_4$	245975	_	
SrLiVO_4	Pnma(62)	mv-30437085	$\rm LiCoPO_4$	258957	${\rm Olivine}\#{\rm Mg}_2{\rm SiO}_4$	
$Na_2Li(ScBr_4)_3$		mv-6704684				
$\mathrm{NaLi}_{2}\mathrm{Lu}_{3}\mathrm{Br}_{12}$	D9 1/ (11)	mv-6703544		250200		
Na ₂ LiLu ₃ Br ₁₂	$P_{2_1/m(11)}$	mv-6704765	\cup s ₂ n11 ₃ f ₁₂	299399		
$K_2Li(ScBr_4)_3$		mv-6707348	mv-6707348			

Table S4: Continued

Promising candidates		Parent Structures		Structure tupe	
Material	Space group	Material ID	Material	ICSD ID	Structure type
Cs_2LiPO_4	Fddd(70)	mv-24746431	Cs_2LiVS_4	414186	$K_2CuNbSe_4$
$\rm LiLu_2Cl_7$	P-1(2)	mv-21560230	$\rm TlBi_2 Cl_7$	421318	-
$\rm RbLiCl_2$	C2/c(15)	mv-31397981	$CsLiCl_2$	423634	-
$\rm RbLiLuCl_5$	$P2_{-}1/c(14)$	mv-22089781	${ m KLiTmF}_5$	428536	${ m LiKYF}_5$
${\rm Li}_{3}{\rm Ca}({\rm BO}_{2})_{5}$	P-1(2)	mv-1332650	$Na_3Sr(BO_2)_5$	260005	$Na_3SrB_5O_{10}$
$SrLiLuCl_6$		mv-8065139			
$SrLiScBr_6$	$P2_{-}1/c(14)$	mv-8065059	$\operatorname{BaLiAlF}_6$	260011	$\rm LiBaCrF_6$
$SrLiLuBr_6$		mv-8065140	•		
$Rb_3Li_4Y_2Cl_{13}$		mv-15830245			
$Rb_3Li_4Lu_2Cl_{13}$		mv-15830965	-		
$\rm Li_7Lu_2Cl_{13}$		mv-15824305			
$\rm K_3Li_4Lu_2Cl_{13}$		mv-15828301			
$Cs_3Li_4Lu_2Cl_{13}$		mv-15834961			
$Na_3Li_4Sc_2Br_{13}$		mv-15824666			
$Na_3Li_4Lu_2Br_{13}$	$D_{-} 2(201)$	mv-15825638	Dh Tru Cu Du	409509	
$\rm Li_7Lu_2Br_{13}$	Pn-3(201)	mv-15824306	$\operatorname{KD}_3\operatorname{Im}_2\operatorname{Cu}_4\operatorname{Br}_{13}$	402503	-
$\mathrm{K_{3}Li_{4}Lu_{2}Br_{13}}$		mv-15828302			
$\mathrm{Cs}_3\mathrm{Li}_4\mathrm{Al}_2\mathrm{Cl}_{13}$		mv-15833881			
$Na_3Li_4Sc_2Cl_{13}$		mv-15824665			
$\mathrm{Na_3Li_4Y_2Cl_{13}}$		mv-15824917			
$\rm Na_3Li_4Lu_2Cl_{13}$		mv-15825637			
$\mathrm{K_{3}Li_{4}Y_{2}Cl_{13}}$		mv-15827581			

Table S4: Continued

Calculated properties of identified promising solid-state

electrolytes ($\sigma_{300K} < 10 \text{ mS/cm}$)

Table S5: Calculated properties of identified promising solid-state electrolytes with Li⁺ conductivities lower than 10 mS/cm at 300 K. These properties include the composition of candidate material, phase stability (E_{hull-m}), shear modulus (G), Pugh's ratio (G/K), HSE band gap (E_g), electrochemical stability window, Li⁺ conductivity at 300 K and material's ID in the Matterverse database. The data is sorted by the predicted E_{hull-m} value. For materials do not exhibit diffusive behaviors in long-time MD simulations at 300 K, their σ_{300K} s were marked as "-".)

	E_{hull-m}	C (CD)	O /IZ	\mathbf{E} (V)	Electrochemical	σ_{300K}	
Material	$(\mathrm{meV}/\mathrm{atom})$	G (GPa)	G/K	\mathbf{E}_g (eV)	window (V)	(mS/cm)	Material ID
K_3LiSiS_4	-187	12.63	0.45	2.96	$1.10 \sim 3.56$	0.01	mv-15996940
$\rm Cs_4Li_2Al_4S_9$	-166	9.54	0.38	3.05	$0.79 {\sim} 3.64$	0.47	mv-16124360
$\rm Rb_4LiNbO_5$	-115	16.44	0.51	2.82	$1.09{\sim}3.67$	0.15	mv-955162
$Rb_5LiZr_2S_7$	-110	8.83	0.40	2.53	$0.75 {\sim} 3.25$	2.55	mv-12207323
$\rm Rb_5 LiBe_8 S_{11}$	-95	11.47	0.44	3.22	$0.81 \sim 4.11$	0.02	mv-15858566
K_2 LiTa O_4	-87	11.82	0.41	3.66	$0.81 {\sim} 3.25$	-	mv-26169630
$\rm Rb_7 Li Hf_2 O_8$	-70	10.75	0.49	2.53	$1.37 {\sim} 3.82$	0.33	mv-8805837
$\mathrm{K}_{3}\mathrm{Li}_{4}\mathrm{Lu}_{2}\mathrm{Br}_{13}$	-28	8.86	0.51	3.69	$0.62 \sim 3.38$	6.23	mv-15828302
$K_2LiLuBr_6$	-16	9.43	0.54	3.54	$0.67 {\sim} 3.39$	0.01	mv-28933317
$K_2Li(ScBr_4)_3$	-14	8.47	0.41	2.96	$0.89 \sim 3.48$	0.04	mv-6305033
$\rm LiSc_6Tl_2Br_{21}$	-13	8.46	0.38	2.95	$1.19 {\sim} 3.32$	-	mv-7289445
$\rm K_2LiLuBr_6$	-12	8.70	0.48	2.41	$0.68 {\sim} 3.26$	6.06	mv-28471345
$\rm SrLiLuCl_6$	-11	11.23	0.41	4.76	$0.70 {\sim} 4.36$	-	mv-23989088
$\rm LiLu_2Cl_7$	-11	8.93	0.54	4.65	$0.72 {\sim} 4.37$	1.2	mv-19344575
$\rm Li_2 HfF_6$	-9	9.69	0.32	6.42	$1.16{\sim}6.40$	0.61	mv-22716062
$\mathrm{K_{3}Li_{4}Lu_{2}Cl_{13}}$	-8	10.22	0.47	4.88	$0.62 {\sim} 4.33$	0.19	mv-15828301
$K_2LiScBr_6$	-7	9.05	0.57	3.06	$0.90{\sim}3.29$	-	mv-28304448
$\mathrm{BaLiLuCl}_6$	-6	9.33	0.57	4.80	$0.72 {\sim} 4.31$	-	mv-24116360
$\rm SrLi_2GeO_4$	-6	37.72	0.60	3.54	$1.09 \sim 3.41$	0.37	$\operatorname{mv-}25910967$
$\mathrm{BaLiLuCl}_6$	-6	9.82	0.41	4.83	$0.72 {\sim} 4.31$	2.71	mv-24238353
$SrLiLuCl_6$	-6	10.81	0.40	4.75	$0.72 \sim 4.31$	-	mv-24018982

	E_{hull-m}	C (CD)	O /IZ	\mathbf{E} (V)	Electrochemical	σ_{300K}	
Material	$(\mathrm{meV}/\mathrm{atom})$	G (GPa)	G/K	\mathbf{E}_g (eV)	window (V)	(mS/cm)	Material ID
SrLiLuBr ₆	-5	9.47	0.45	4.02	$0.71 {\sim} 3.28$	-	mv-23989089
$\rm Rb_3Li_4Lu_2Cl_{13}$	-4	10.17	0.45	5.07	$0.67 {\sim} 4.3$	2.99	mv-15830965
$\rm SrLiLuBr_6$	-4	10.04	0.48	4.00	$0.71 {\sim} 3.27$	-	mv-24018983
$\rm LiLuCl_4$	-4	8.72	0.38	4.58	$0.73 {\sim} 4.29$	-	mv-31285788
$\rm SrLiLuBr_6$	-4	9.86	0.45	3.98	$0.71 {\sim} 3.26$	2.89	mv-24115806
$\rm LiLuCl_4$	-3	8.83	0.37	4.56	$0.73 \sim 4.28$	-	mv-31568835
$\rm LiLuCl_4$	-3	11.00	0.45	4.86	$0.73 \sim 4.28$	-	mv-31586317
$\rm Li_3LuCl_6$	-3	13.08	0.48	4.84	$0.73 {\sim} 4.27$	3.41	mv-22830879
$BaLiLuBr_6$	-2	8.67	0.41	3.90	$0.72 \sim 3.24$	-	mv-24238354
$\mathrm{Cs_3Li_4Lu_2Cl_{13}}$	-1	9.47	0.46	5.07	$0.64 {\sim} 4.27$	5.66	mv-15834961
$\mathrm{Ba_2LiLuBr_8}$	0	9.02	0.39	3.96	$0.72 {\sim} 3.23$	1.82	mv-26367720
$\mathrm{KLi}_2(\mathrm{Sc}_2\mathrm{Br}_7)_3$	0	8.50	0.41	3.01	$0.92 \sim 3.23$	0.27	mv-7289471
$\rm SrLi_2GeO_4$	1	36.95	0.58	3.60	$1.14 \sim 3.36$	-	mv-25943051
$\mathrm{BaLiLuCl}_6$	1	9.05	0.44	4.80	$0.74 {\sim} 4.26$	-	mv-23989643
$\rm Na_3Li_4Lu_2Br_{13}$	2	11.27	0.60	3.78	$0.72 \sim 3.23$	4.37	mv-15825638
$\rm LiScBr_4$	2	8.51	0.42	3.06	$0.92 \sim 3.23$	-	mv-31284828
${\rm LiCaScBr}_6$	3	10.64	0.46	3.18	$0.92 \sim 3.23$	-	mv-24017903
$\rm LiLu_2Cl_7$	5	11.19	0.44	4.03	$0.74 {\sim} 4.26$	-	mv-20883250
$\rm Li_2LuBr_2Cl_3$	5	9.78	0.43	4.23	$0.74 {\sim} 3.24$	-	mv-5349815
${ m Li}_{3}{ m LuBr}_{6}$	5	11.47	0.52	3.86	$0.72 {\sim} 3.23$	-	mv-23180660
$\rm SrLiScBr_6$	6	9.00	0.38	3.20	$0.92 \sim 3.23$	-	mv-23989008
${\rm LiH_3O_2}$	7	16.36	0.57	4.46	$1.39 \sim 3.46$	-	mp-27281
$\rm SrLiScBr_6$	8	8.84	0.35	3.16	$0.92 \sim 3.23$	0.2	mv-24115725
$\rm Cs_2 Li Sc Cl_6$	8	10.97	0.54	3.71	$0.66{\sim}4.3$	-	mp-1113004
$NaLi_2PO_4$	9	32.54	0.52	4.98	$0.71 {\sim} 4.01$	0.02	mp-558045
$\rm SrLiScBr_6$	9	10.23	0.44	3.21	$0.92 \sim 3.23$	0.14	mv-24018902
LiBr	9	8.50	0.47	4.33	$0.01 {\sim} 3.23$	0.02	mp-976280
$\rm Rb_2LiYBr_6$	9	8.42	0.56	3.76	$0.55 \sim 3.34$	0.65	mv-28307133
$BaLiLuCl_6$	9	9.06	0.40	4.79	$0.74 {\sim} 4.26$	0.15	mv-24019537

Table S5: Continued

Matorial	E_{hull-m}	$C(CP_2)$	C/K	\mathbf{F} (oV)	Electrochemical	σ_{300K}	Matorial ID
	$(\mathrm{meV/atom})$	G (GI a)	G/IX	$\mathbf{L}_{g}(\mathbf{ev})$	window (V)	(mS/cm)	Material ID
$\rm Na_2LiLu_6Br_{21}$	9	9.68	0.58	3.68	$0.72 \sim 3.23$	-	mv-7301100
$\mathrm{Rb}_3\mathrm{Li}_4\mathrm{Y}_2\mathrm{Cl}_{13}$	10	9.67	0.43	4.69	$0.59 {\sim} 4.26$	1.12	mv-15830245
$\rm SrLiScBr_6$	11	10.65	0.43	3.13	$0.92 \sim 3.23$	-	mv-24237718
$\mathrm{Na_2Li}(\mathrm{Sc_2Br_7})_3$	11	10.00	0.51	3.11	$0.92 \sim 3.23$	-	mv-7289436
$\rm Li_3LuCl_6$	12	13.68	0.48	4.97	$0.74 {\sim} 4.26$	-	mv-23180659
$\rm SrLiLuCl_6$	12	8.92	0.36	4.71	$0.74 {\sim} 4.26$	-	mv-23258662
$\rm SrLiLuCl_6$	14	10.72	0.48	4.66	$0.74 {\sim} 4.26$	-	mv-8065139
$\mathrm{KLi}_7(\mathrm{GeO}_4)_2$	14	39.28	0.68	3.93	$1.02 \sim 3.35$	6.5	mv-8803254
$\rm Sr_2LiLuCl_8$	14	12.55	0.47	4.75	$0.74 {\sim} 4.26$	-	mv-26367164
${\rm LiB(HO)_4}$	14	18.12	0.53	5.47	$1.44 \sim 3.58$	-	mp-23662
$\mathrm{NaLi}_2(\mathrm{Sc}_2\mathrm{Br}_7)_3$	14	9.54	0.49	3.04	$0.92 \sim 3.23$	-	mv-7289447
$CsLi_2Cl_3$	16	9.40	0.59	5.22	$0.01 {\sim} 4.26$	-	mv-18417331
$\mathrm{K}_{3}\mathrm{Li}_{2}\mathrm{F}_{5}$	16	22.91	0.56	5.56	$0.47 {\sim} 5.83$	5.1	mv-9126917
$\rm SrLiScCl_6$	17	11.54	0.47	3.65	$0.92 \sim 4.26$	-	mv-23989007
$\rm Sr_2LiLuBr_8$	18	11.22	0.49	3.85	$0.72 {\sim} 3.23$	-	mv-26367165
LiCl	18	11.91	0.45	5.80	$0.01 {\sim} 4.26$	-	mp-1185319
$\rm SrLiLuBr_6$	18	9.98	0.49	3.80	$0.72 \sim 3.23$	-	mv-8065140
$Na_2LiLu_3Br_{12}$	19	9.85	0.58	3.80	$0.72 {\sim} 3.23$	-	mv-6704765
$\rm LiLuCl_4$	19	9.33	0.53	4.49	$0.74 {\sim} 4.26$	-	mv-31579856
$\rm NaLi_2Lu_3Br_{12}$	19	9.44	0.55	3.83	$0.72 \sim 3.23$	-	mv-6703544
$\rm SrLiScCl_6$	19	11.62	0.49	3.69	$0.92 {\sim} 4.26$	3.76	mv-24237717
${\rm Li}_3{\rm ScBr}_6$	19	12.01	0.54	3.15	$0.92 \sim 3.23$	-	mv-23179688
$\rm Na_2LiLu_3Br_{12}$	20	9.54	0.57	3.77	$0.72 \sim 3.23$	-	mv-6302396
${ m Li}_3{ m ScCl}_6$	20	13.36	0.58	3.82	$0.92 {\sim} 4.26$	-	mv-22830798
$Cs_3Li_4Al_2Cl_{13}$	20	11.98	0.52	4.19	$1.36 {\sim} 4.26$	4.05	mv-15833881
$\rm SrLi_2SiO_4$	21	43.93	0.64	4.36	$0.26 \sim 3.48$	-	mv-25910959
$\rm NaLi_7(GeO_4)_2$	21	38.09	0.64	3.85	$1.02 \sim 3.34$	9.45	mv-8803210
SrLiVO_4	22	28.34	0.47	3.61	$1.42 \sim 3.73$	0.01	mv-30437085
$Na_3Li_4Lu_2Cl_{13}$	22	11.69	0.45	4.80	$0.62 \sim 3.81$	3.71	mv-15825637

Table S5: Continued

Material	E_{hull-m}	G (GPa)	G/K	E _a (eV)	Electrochemical	σ_{300K}	Material ID
	$(\mathrm{meV/atom})$	a (ar a)	0/11	<i>Lg</i> (01)	window (V)	(mS/cm)	
$LiInO_2$	22	54.27	0.57	1.80	$1.40 \sim 3.24$	-	mv-27283190
$\rm Na_2 Li (ScBr_4)_3$	23	10.21	0.56	3.14	$0.92 \sim 3.23$	-	mv-6302369
$\rm Li_2HfCl_6$	23	10.86	0.60	4.48	$1.37 {\sim} 4.26$	4.53	mv-28216780
$\rm RbLiLuCl_5$	23	13.15	0.47	4.46	$0.74 {\sim} 4.26$	-	mv-22089781
$\mathrm{NaLiHfF}_6$	23	12.77	0.45	6.77	$1.18{\sim}6.37$	-	mv-23751362
$\rm Na_3Li_4Sc_2Cl_{13}$	24	11.58	0.49	3.92	$0.90{\sim}3.81$	0.29	mv-15824665
$\rm LiLu_2 Cl_7$	24	10.64	0.40	3.99	$0.74 {\sim} 4.26$	-	mv-21560230
$\mathrm{Na_3Li_4Y_2Cl_{13}}$	24	11.09	0.43	4.62	$0.66{\sim}3.81$	5.59	mv-15824917
$\mathrm{KLi}_7(\mathrm{SiO}_4)_2$	25	41.62	0.67	4.60	$0.54 {\sim} 3.38$	2.18	mv-8803250
$\rm SrLiScCl_6$	25	11.07	0.46	3.66	$0.92 {\sim} 4.26$	0.15	mv-24018901
$\rm SrLi(BO_2)_3$	26	23.04	0.44	4.36	$1.25 \sim 3.68$	0.2	mv-17202210
$\mathrm{BaLiLuCl}_6$	26	9.57	0.41	4.81	$0.74 {\sim} 4.26$	-	mv-24203199
$\mathrm{BaLiScCl}_6$	26	9.99	0.67	3.70	$0.92 {\sim} 4.26$	0.72	mv-24116279
$\mathrm{Na_3Li_4Sc_2Br_{13}}$	26	11.12	0.59	3.23	$0.92 \sim 3.23$	1.06	mv-15824666
$\rm LiLu_3F_{10}$	26	23.30	0.34	6.03	$0.73 {\sim} 6.69$	-	mv-8011123
$\rm LiLuCl_4$	26	9.59	0.47	4.68	$0.74 {\sim} 4.26$	-	mv-31635209
$\rm LiAl_2F_7$	27	25.42	0.43	7.67	$1.29 \sim 6.48$	-	mv-19344508
$\rm Li_4Ca_2Si_3O_{10}$	27	36.94	0.55	4.77	$0.88 {\sim} 3.59$	1.04	mv-13090933
$\rm KLiSiO_3$	27	34.05	0.68	4.42	$0.83 \sim 3.59$	-	mv-27371981
$\rm SrLiLuCl_6$	27	10.53	0.44	4.67	$0.74 {\sim} 4.26$	-	mv-24203184
$RbLi_2Cl_3$	29	10.95	0.64	5.07	$0.01 {\sim} 4.26$	-	mv-18416575
${\rm Li}_3{\rm Ca}({\rm BO}_2)_5$	29	30.33	0.5	5.20	$1.26 \sim 3.68$	-	mv-1332650
$\rm Li_2BeF_4$	30	16.63	0.41	8.08	$0.89 {\sim} 6.49$	-	mv-5203013

Table S5: Continued

References

- Hood, Z. D.; Kates, C.; Kirkham, M.; Adhikari, S.; Liang, C.; Holzwarth, N. A. Structural and electrolyte properties of Li4P2S6. *Solid State Ionics* 2016, 284, 61–70.
- (2) Suzuki, N.; Richards, W. D.; Wang, Y.; Miara, L. J.; Kim, J. C.; Jung, I.-S.; Tsujimura, T.; Ceder, G. Synthesis and Electrochemical Properties of I4-Type Li1+2xZn1xPS4 Solid Electrolyte. *Chemistry of Materials* **2018**, *30*, 2236–2244.
- (3) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., et al. A lithium superionic conductor. *Nature materials* **2011**, *10*, 682–686.
- (4) Whiteley, J. M.; Woo, J. H.; Hu, E.; Nam, K.-W.; Lee, S.-H. Empowering the lithium metal battery through a silicon-based superionic conductor. *Journal of the Electrochemical Society* **2014**, *161*, A1812.
- (5) Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. Li10SnP2S12: an affordable lithium superionic conductor. *Journal of the American Chemical Society* 2013, 135, 15694–15697.
- (6) Yao, X.; Liu, D.; Wang, C.; Long, P.; Peng, G.; Hu, Y.-S.; Li, H.; Chen, L.; Xu, X. Highenergy all-solid-state lithium batteries with ultralong cycle life. *Nano letters* 2016, 16, 7148–7154.
- (7) Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. *Nature Energy* 2016, 1, 1–7.
- (8) Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y.-H.; Shen, Y.; Li, L.; Nan, C.-W. Highconductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering

processes for all-solid-state lithium–sulfur batteries. ACS applied materials & interfaces **2018**, 10, 42279–42285.

- (9) Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnettype Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46, 7778–7781.
- (10) Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M. High ionic conductivity in lithium lanthanum titanate. *Solid State Communications* 1993, *86*, 689–693.
- (11) Zhao, Y.; Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. Journal of the American Chemical Society 2012, 134, 15042–15047.
- (12) Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. *Advanced Materials* **2018**, *30*, 1803075.
- (13) Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. *Solid state ionics* **2002**, *148*, 45–51.
- (14) Xu, Y.-N.; Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M.; Ching, W. Electronic structure and electrical conductivity of undoped LiFePO4. *Electrochemical and Solid-State Letters* 2004, 7, A131.
- (15) Li, J.; Liu, Z.; Wang, Y.; Wang, R. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. *Journal of Alloys and Compounds* **2020**, *834*, 155150.
- (16) Dokko, K.; Mohamedi, M.; Fujita, Y.; Itoh, T.; Nishizawa, M.; Umeda, M.; Uchida, I. Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. *Journal of the Electrochemical Society* **2001**, *148*, A422.

- (17) Barker, J.; Pynenburg, R.; Koksbang, R.; Saidi, M. An electrochemical investigation into the lithium insertion properties of LixCoO2. *Electrochimica acta* 1996, 41, 2481– 2488.
- (18) Levasseur, S.; Ménétrier, M.; Delmas, C. On the dual effect of Mg doping in LiCoO2 and Li1+ δCoO2: structural, electronic properties, and 7Li MAS NMR studies. *Chemistry* of materials **2002**, 14, 3584–3590.
- (19) Ward, L.; Liu, R.; Krishna, A.; Hegde, V. I.; Agrawal, A.; Choudhary, A.; Wolverton, C. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. *Physical Review B* 2017, *96*, 024104.
- (20) Allmann, R.; Hinek, R. The introduction of structure types into the Inorganic Crystal Structure Database ICSD. Acta Crystallographica Section A: Foundations of Crystallography 2007, 63, 412–417.
- (21) Zagorac, D.; Müller, H.; Ruehl, S.; Zagorac, J.; Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. *Journal of applied crystallography* **2019**, *52*, 918–925.