Supporting information for

Oxygen Vacancy Induced Efficient Hydrogen Spillover of Ni₁₇W₃/WO_{3-x}/MoO_{3-x} for Superior pH-Universal Hydrogen Evolution Reaction

Yiqing Sun^{a,b}, Yiwei Bao^{a,b}, Di Yin^c, Xiuming Bu^{b*}, Yuxuan Zhang^c, Kaihang Yue^b, Xiaoshuang Qi^b, Ziyan Cai^b, Yongqiang Li^d, Xiulan Hu^{a*}, Johnny C. Ho^{c,e*}, Xianying Wang^{b*}

^a College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road No.30, 211816, Nanjing, Jiangsu, China

^b CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China

^c Department of Materials Science and Engineering City University of Hong Kong Kowloon, Hong Kong SAR 999077, P. R. China

^d Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China

^e Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816–
 8580, Japan

*Corresponding author. E-mail: <u>buxiuming@mail.sic.ac.cn</u> (Xiuming Bu); <u>whoxiulan@163.com</u> (Xiulan Hu); <u>johnnyho@cityu.edu.hk</u> (Johnny C. Ho); <u>wangxianying@mail.sic.ac.cn</u> (Xianying Wang)

Supplementary Figures and Tables

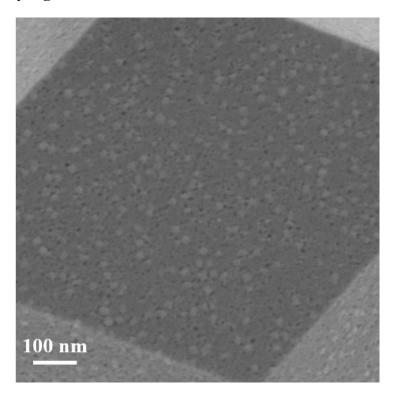


Figure S1. High-magnification SEM image of the NWP.

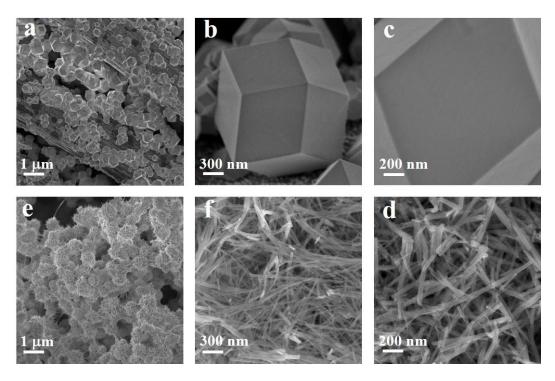


Figure S2. Low- and high-magnification SEM images of (a-c) $Ni_4W_6O_{21}$, (e-d) Mo- $Ni_4W_6O_{21}$.

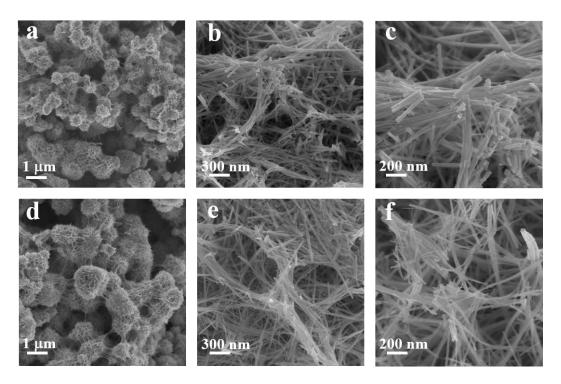


Figure S3. Low- and high-magnification SEM images of (a-c) $NiW_1M_{0.5}R$, (e-d) $NiW_1M_{1.5}R$.

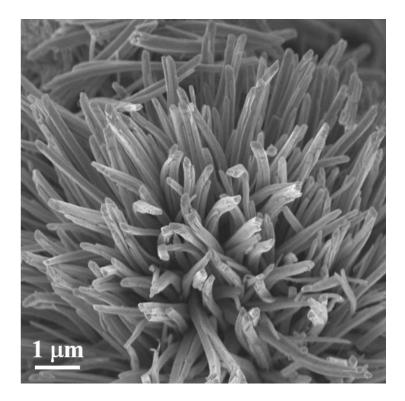


Figure S4. SEM images of the NMR.

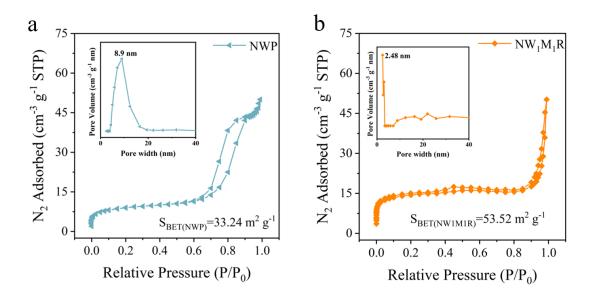


Figure S5. Argon adsorption and desorption isotherms of NWP (a) and NW_1M_1R (b),

the inset shows the corresponding pore size distribution curve.

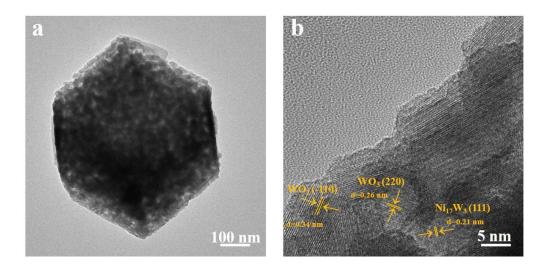


Figure S6. (a) TEM and (b) HRTEM images of NWP.

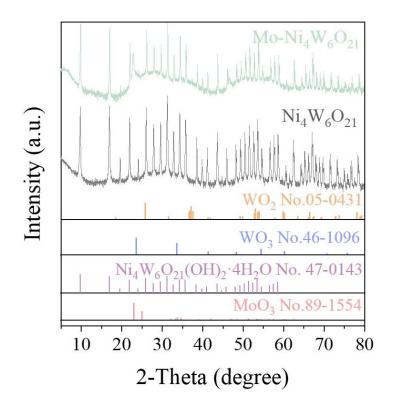


Figure S7. XRD patterns of the Mo-Ni₄W₆O₂₁ and Ni₄W₆O₂₁.

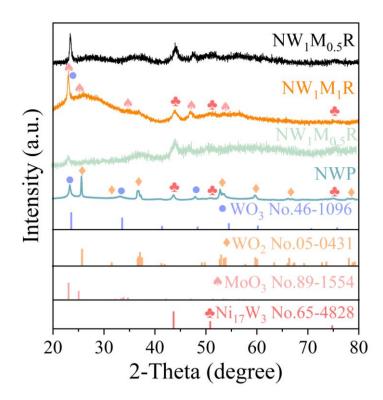


Figure S8. XRD patterns of the $NiW_1M_{0.5}R$, NW_1M_1R , $NiW_1M_{1.5}R$ and NWP.

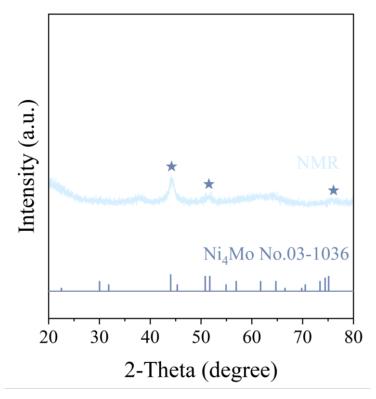


Figure S9. XRD patterns of the NMR.

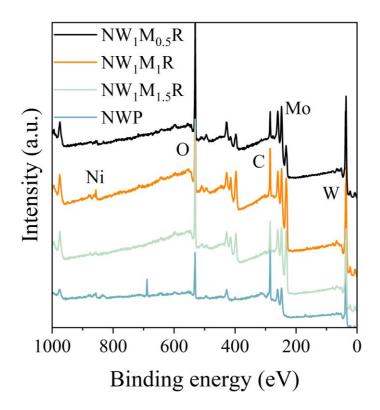


Figure S10. Full XPS spectrum of $NW_1M_{0.5}R$, NW_1M_1R , $NW_1M_{1.5}R$, and NWP.

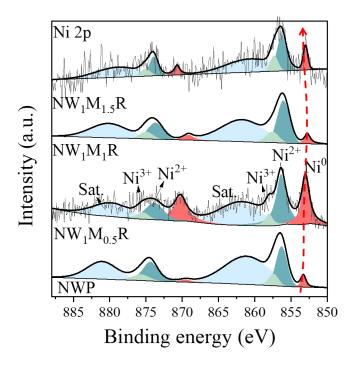


Figure 11. High-resolution XPS signals of Ni 2p for $NW_1M_{0.5}R$, $NW_1M_{1.5}R$, NW_1M_1R and NWP.

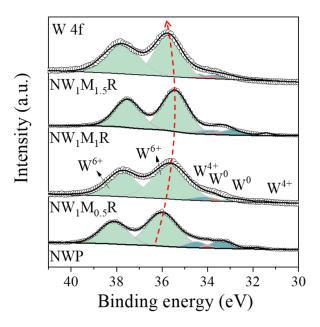


Figure S12. High-resolution XPS signals of W 4f for $NW_1M_{0.5}R$, $NW_1M_{1.5}R$, NW_1M_1R

and NWP.

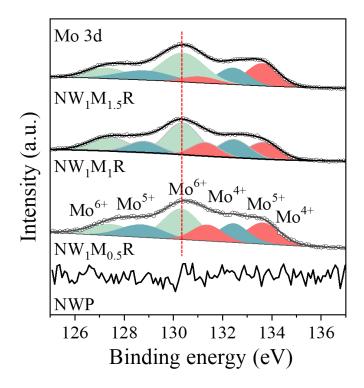


Figure S13. High-resolution XPS signals of Mo 3d for $NW_1M_{0.5}R$, $NW_1M_{1.5}R$, NW_1M_1R and NWP.

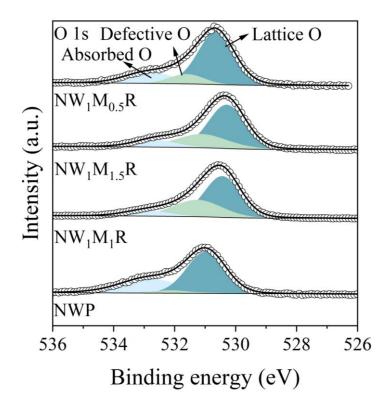


Figure S14. High-resolution XPS signals of O 1s for $NW_1M_{0.5}R$, $NW_1M_{1.5}R$, NW_1M_1R , and NWP.

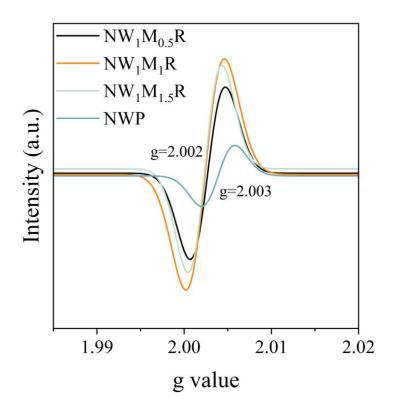


Figure S15. EPR spectra of $NW_1M_{0.5}R$, NW_1M_1R , $NW_1M_{1.5}R$ and NWP.

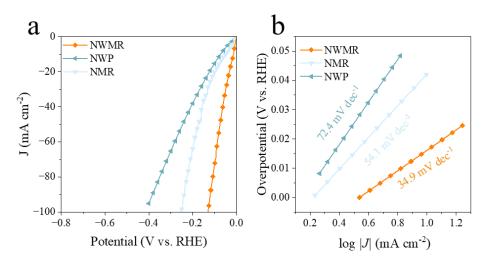


Figure S16. (a) LSV curves of NW_1M_1R , NMR, and NWP and (b) Tafel slope of different electrodes.

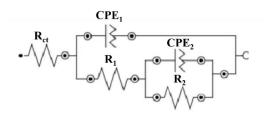
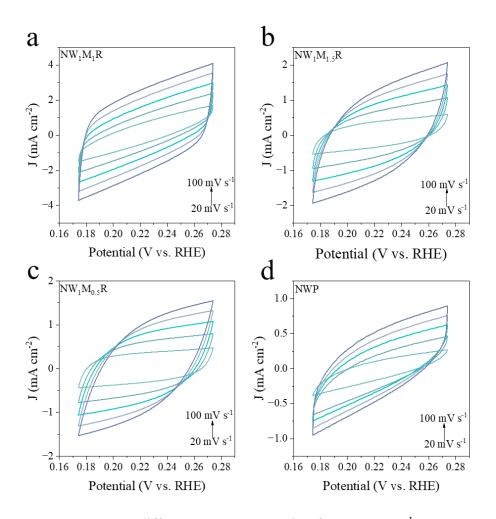



Figure S17. Equivalent circuit diagram of $NW_1M_{0.5}R$, NW_1M_1R , $NW_1M_{1.5}R$ and NWP.

Figure S18. CV curves at different scan rates ranging from 20 mV s⁻¹ to 100 mV s⁻¹ (a) NW₁M₁R, (b) NW₁M_{1.5}R, (c) NW₁M_{0.5}R, and (d) NWP. The potential scanning rates are from 0.173 V to 0.273 V vs. RHE with an interval of 20 mV s⁻¹.

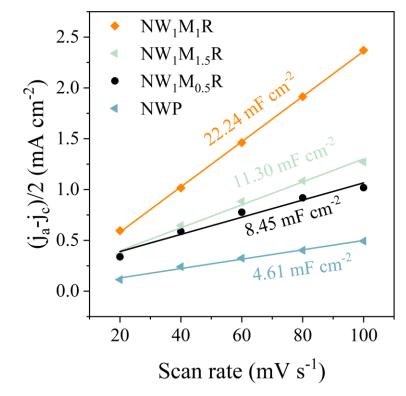


Figure S19. C_{d1} of NW_1M_1R , $NW_1M_{1.5}R$, $NW_1M_{0.5}R$ and NWP.

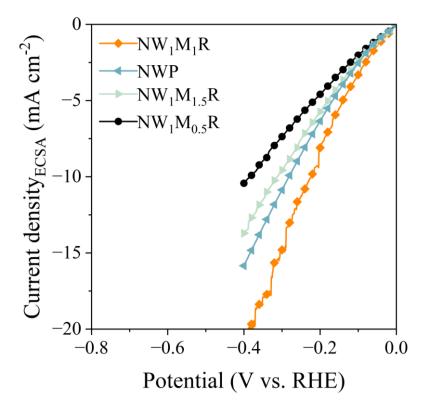


Figure S20. ECSA-normalized LSV of the NW_1M_1R , $NW_1M_{1.5}R$, $NW_1M_{0.5}R$, and NWP.

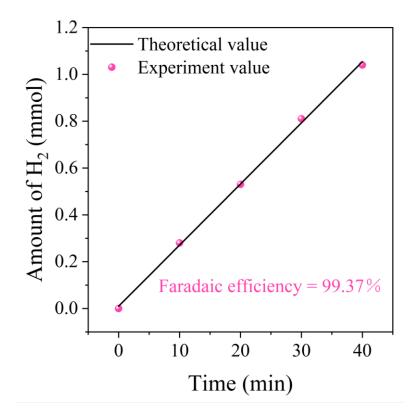


Figure S21. Faradic efficiency measurements.

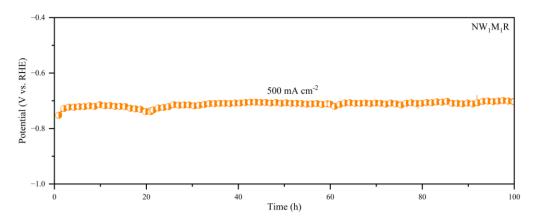


Figure S22. Chronopotentiometry stability tests of the NW_1M_1R electrodes under the high current density of 500 mA cm⁻² (without iR correction).

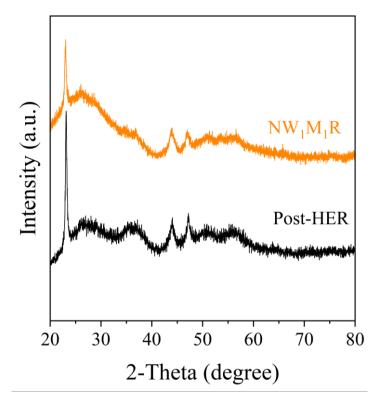


Figure R23. XRD patterns of NW_1M_1R and Post-HER.

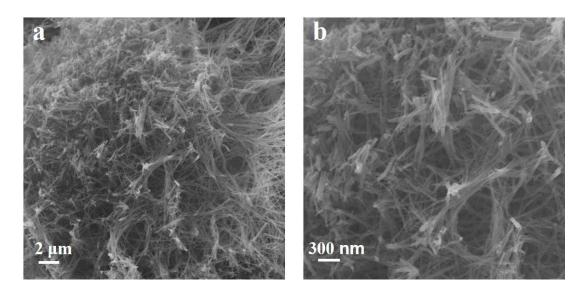


Figure S24. SEM image of NW_1M_1R after HER stabilization for 160 h at 1.0 M KOH.

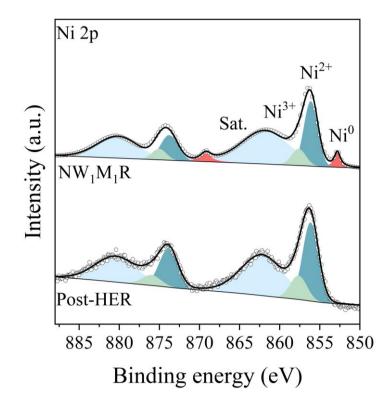


Figure S25. High-resolution XPS signals of Ni 2p for NW₁M₁R and Post-HER.

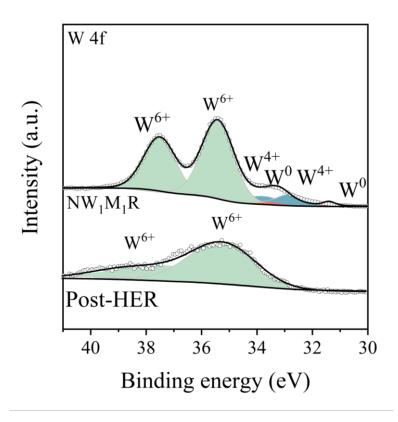


Figure S26. High-resolution XPS signals of W 4f for NW_1M_1R and Post- HER.

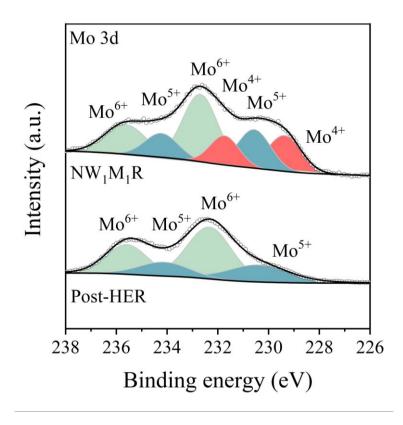


Figure S27. High-resolution XPS signals of Mo 3d for NW₁M₁R and Post- HER.

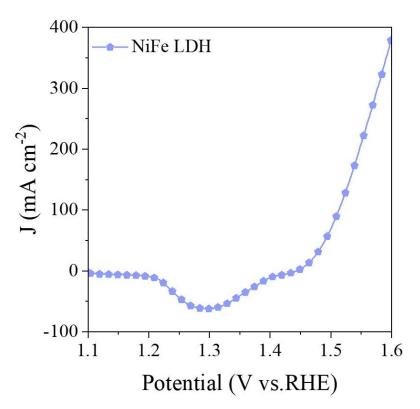


Figure S28. LSV curves of home-made NiFe LDH in 1.0 M KOH.

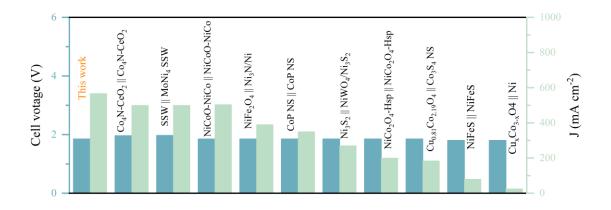


Figure S29. AEM performance comparison with NW_1M_1R and recently reported electrocatalyst.

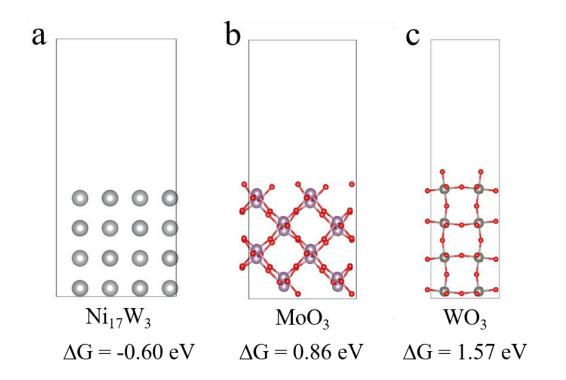


Figure S30. ΔG of Ni₁₇W₃, MoO₃ and WO₃.

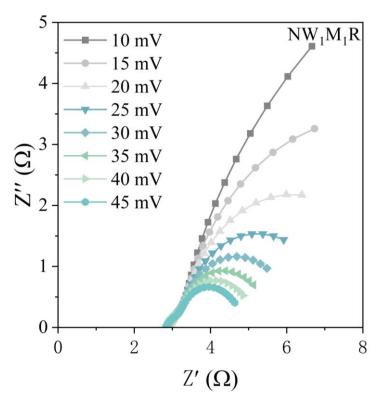


Figure S31. Nyquist plots of NW_1M_1R in 1.0 M KOH at various HER overpotentials.

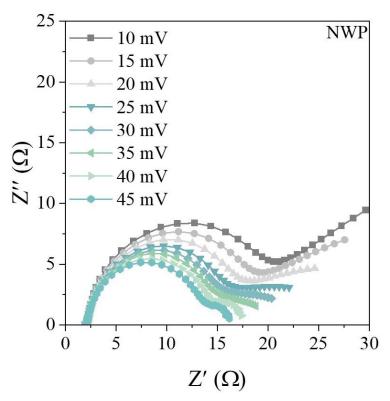


Figure S32. Nyquist plots of NWP in 1.0 M KOH at various HER overpotentials.

Electrocatalyst	Overpotentials (mV) at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Reference
NW_1M_1R	16	34.9	This work
WC-N/W	87	44.9	Adv. Sci. 2022, 9, 2106
NiMo/Co(OH)2@CC	30	41	Adv. Funct. Mater. 2021, 31, 2102117
NiMo/Ni-P	32	60.85	Nat. Commun. 2018, 9, 2014
MoO ₃ /Ni-NiO	62	59	Adv. Mater. 2020, 32, 2003414
β-NiMoO4	23	44	Nat. Commun. 2021, 12, 5960.
NiMoO _x /NiMoS	38	38	Nat. Commun. 2020, 11, 5462
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂ /Ni	113	85	J. Am. Chem. Soc. 2019, 141, 10417
IrMo _{0.59} NPs	23	50	Adv. Mater. 2020, 32, 2006034.
DS IrNi@CNTS	17	48	ACS Catal. 2020, 10, 7322-7327
Co/MoN	52	77.5	Appl. Catal. B 2021, 286, 119882
Ni ₂ P/MoS ₂	149	60.2	Adv. Funct. Mater. 2019, 29, 1809151
Ni ₃ N-NiMoN	31	64	Nano Energy 2018 , 44, 353-363
FeP/Ti	97	64	Appl. Catal. B 2020, 260, 118156
P-MoP/Mo ₂ N	89	78	Angew. Chem. Int. Ed. 2021, 60, 6673-6681

Table S1. Comparisons of the HER catalytic activity of hierarchical NW_1M_1R electrode

in 1.0 M KOH electrolyte with representative electrocatalysts reported previously.

Catalyst	η (mV)	$R_{s}(\Omega)$	CPE1-T	CPE ₁ -P	$R_1(\Omega)$	CPE ₂ -T	CPE ₂ -P	R ₂ (Ω)
NWP	10	2.046	0.008685	0.89501	19.22	0.37296	0.72155	32.77
	15	2.056	0.008624	0.89624	17.64	0.48110	0.76287	18.50
	20	2.069	0.008486	0.89514	16.25	0.60179	0.80656	11.04
	25	2.059	0.008393	0.89588	15.04	0.73284	0.85480	7.063
	30	2.068	0.008333	0.89522	14.23	0.85369	0.89342	5.069
	35	2.073	0.008211	0.89666	13.61	1.11300	0.98337	3.452
	40	2.059	0.008294	0.89383	12.84	1.31100	0.98950	2.657
	45	2.060	0.008199	0.89546	12.05	1.4480	0.99870	2.153

 Table S2. The fitted parameters of the EIS data of NWP catalysts for HER.

Catalyst	η (mV)	$R_{s}(\Omega)$	CPE ₁ -T	CPE ₁ -P	$R_1(\Omega)$	CPE ₂ -T	CPE ₂ -P	R ₂ (Ω)
	10	3.035	0.74778	0.83254	1.163	0.7300	0.82853	14.22
NW1M1R	15	3.021	0.74539	0.84010	1.078	0.8764	0.85580	7.568
	20	3.039	0.83357	0.86548	1.218	1.1190	0.89389	4.336
	25	3.022	0.80187	0.85017	1.068	1.2940	0.90824	2.957
	30	3.000	0.76032	0.86896	0.895	1.4260	0.90796	2.208
	35	2.998	0.77300	0.85863	0.834	1.6610	0.91558	1.662
	40	2.991	0.76607	0.86803	0.793	1.8250	0.92734	1.311
	45	2.982	0.75020	0.85792	0.706	1.9600	0.92208	1.111

Table S3. The fitted parameters of the EIS data of NW_1M_1R catalysts for HER.