Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information Efficient photocatalytic hydrogen evolution based on Zscheme 2D LaVO₄/ 2D Mo-doped S_V-ZnIn₂S₄ heterojunction

Wei Guan,¹ Lin Zhang,¹ Peng Wang,¹ Ying Wang,¹ Haoyu Wang,¹ Xingchen Dong,¹ Liyan Yu¹,

Zhixing Gan^{1, 2}*, Lifeng Dong¹* and Lina Sui¹*

 ¹ College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
 ² Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, PR China.

*Correspondence and requests for materials should be addressed to Z.G., L.D. or L. S. (E-mail: zxgan@njnu.edu.cn or donglifeng@qust.edu.cn or <u>linasui@qust.edu.cn</u>)

Methods

Materials.

Analytical grade reagents were used directly without purification. LaN₃O₉·6H₂O (99.99%), NH₄VO₃ (99.9%), InCl₃ (99.99%), Na₂MoO₄ (99.99%), Zn(CH₃COO)₂·2H₂O (99.8%), Thioacetamide (TAA, 99%), Triethanolamine (TEOA, 98%) were obtained from Shanghai Aladdin Ltd. NaOH (99%), Cyclohexane (99%), Oleic acid (99%), Anhydrous ethanol (99%) were purchased from Sinopharm Chemical Reagent Co., Ltd.

Synthesis of ZIS.

The ZIS was prepared by a hydrothermal method, 1.6 mmol Zn(CH₃COO)₂·2H₂O, 3.2 mmol InCl₃, and 6.4 mmol TAA were dispersed in 30 mL deionized water and 30 mL ethanol with vigorous stirring for 30 min. Then, the obtained solution was transferred into a 100 mL Teflon-lined autoclave and heated at 180 °C for 24 h. The sample was washed with deionized water and ethanol several times and then vacuumdried.

Synthesis of S_V-MZIS

The synthesis process of S_V -MZIS is the same as that of ZIS. 0.03mmol Na₂MoO₄, 1.6 mmol Zn(CH₃COO)₂·2H₂O, 3.2 mmol InCl₃, and 12.8 mmol TAA were dispersed in 30 mL deionized water and 30 mL ethanol with vigorous stirring for 30 min. Then, the obtained solution was transferred into a 100 mL Teflon-lined autoclave and heated at 180 °C for 24 h. The sample was washed with deionized water and ethanol several times and then vacuum-dried.

Synthesis of LaVO₄

LaVO₄ was synthesized by solvothermal method. 1.2 g NaOH and 0.12 g NH₄VO₃ were added to 10 mL of deionized water, then 20 mL of oleic acid and 20 mL of anhydrous ethanol were added sequentially with vigorous stirring for 30 min. 2 mL (1 mmol/mL) of aqueous La(NO₃)₃·6H₂O solution was then added. The mixed solution was transferred to a 100 mL Teflon reactor and kept at 140 °C for 8 h. After natural cooling to room temperature, the sample was washed with cyclohexane and ethanol several times. Finally, the obtained LaVO₄ nanosheets were placed in a vacuum drying oven at 60 °C for 6 h.

Synthesis of V-LaVO₄

200 mg of LaVO₄ was taken into a crucible and calcined in a tube furnace at 450°C in the air for 4 h. Finally, V-LaVO₄ was obtained.

Synthesis of R-LaVO₄

200 mg of V-LaVO₄ was taken and dispersed in a solution consisting of 20 mL of N₂H₄·H₂O and 40 mL of deionized water, stirred for 30 min. Transferred to a 100 mL Teflon reactor and kept at 240°C for 5 h. The sample was washed with deionized water several times and then vacuum-dried. Finally obtained R-LaVO₄.

Synthesis of R-LaVO₄/ S_V-MZIS

The synthesis process of R-LaVO₄/ S_V -MZIS is the same as that of S_V -MZIS. An amount of R-LaVO₄ was added to the precursor solution of S_V -MZIS and stirred for 30 min, then transferred to a 100 mL Teflon lined reactor and kept at 180 °C for 24 h. The

sample was washed with deionized water and ethanol several times and then vacuumdried.

Characterizations

X-ray diffraction (XRD) patterns were examined by a Bruker D8 diffractometer using Cu Ka radiation. The morphologies and microstructures of the samples were characterized by a transmission electron microscope (TEM, FEI, JEM-2100PLUS, JP). Atomic force microscopy (AFM, AFM5000II) was used to examine the micromorphology. Brunauer Emmett Teller (BET) surface area was tested with an automatic instrument (ASAP 2460, Micromeritics, USA). Raman was tested with Raman Spectrometer (Invia Qontor, Renishaw, UK). Fourier Transform Infrared (FT-IR) was tested with Fourier Transform infrared spectroscopy (Nicolet IS10, Thermo, USA). Droplet contact Angle was tested with a contact Angle measuring instrument (LSA100, LAUDA, DE). X-ray photoelectron spectroscopy (XPS) was used to analyse the structure and composition of the samples by Thermo ESCALAB 250Xi with Al Ka source. The XPS spectra were calibrated through the standard C 1s peak at 284.8 eV. Ultraviolet-visible diffuse reflectance (UV-vis) spectra in the range of 200-800 nm were recorded by a spectrophotometer (Cary5000, Varian, USA). Free radicals and vacancy were explored by electron spin resonance spectra (EPR, EPR200-Plus, CN). The surface photovoltage (SPV) was measured by the surface photovoltage spectrometer (CEL-SPS1000, Beijing China Education Au-light Co. Ltd. China).

Photoelectrochemical measurements

Electrochemical measurements were performed using an electrochemical analyser (Autolab, PGSTAT 302 N) with a standard three-electrode system. 0.5 M Na₂SO₄ solution was used as the electrolyte for transient photocurrent and electrochemical impedance spectroscopy (EIS) measurements. The photocatalysts were coated on fluorine-doped tin oxide (FTO) glass with an area of 1 cm² in a three-electrode system. Platinum sheets and Ag/AgCl were used as counter and reference electrodes, respectively. Typically, 6 mg of catalyst was dispersed in 300 μ L deionized water, which was then dropped evenly on the FTO glass and dried on a hot plate to ensure that the samples were snug on the FTO substrate. EIS was performed over a frequency range of 0.01 Hz to 100 kHz with an AC amplitude of 100 mV. Transient photocurrents were tested with illumination (300 W Xe lamp, 1.5 adaptive median (AM) filter) at 0.1 V bias.

Photocatalytic hydrogen evolution

Photocatalytic water splitting reaction over the photocatalysts was conducted in a Pyrex top-irradiation reaction vessel connected to a closed glass gas circulation system with cooling water (6 °C) to maintain the reaction solution. Typically, 10 mg of photocatalyst powder was dispersed in 50 mL aqueous solution containing 10 vol% triethanolamine sacrificial agent. Before the test, the prepared suspension was evacuated for 30 min to completely remove the dissolved oxygen. A 300 W Xe lamp with a 420 nm cut-off filter was used as the visible light source. The amount of hydrogen evolution was analysed by a gas chromatographer (GC7920, Beijing China Education Au-light Co. Ltd. China). The apparent quantum yield (AQY) for hydrogen

5

evolution was measured under illumination of the simulated solar light with a band-pass filter (380, 420, 550 nm). Photon flux of the incident light was measured using an optical power meter (CEL-NP2000, Beijing China Education Au-Light Co., Ltd). The AQY was calculated according to the following equation:

$$\begin{aligned} AQY(\%) &= \frac{N_e}{N_p} = \frac{2 \times number \ of \ evolved \ H_2 \ molecules}{number \ of \ incident \ photons} \times 100\% \\ &= \frac{2 \times nH_2 \times N_A \times h \times c}{S \times P \times t \times \lambda} \times 100\% \end{aligned}$$

where N_p is the total incident photons, N_e is the total reactive electrons, M is the amount of H₂ molecules, N_A is Avogadro constant, h is Planck's constant, c is the speed of light, S is the irradiation area, P is the intensity of irradiation light, t is the photoreaction time, and λ is the wavelength of the monochromatic light.

Calculation methods

The calculation adopted density functional theory (DFT) combined with mode conservation pseudopotential and plane wave method in CASTEP program of Materials Studio. The conjugate gradient method was to minimize the total energy of the system to obtain a self-consistent ground state of the system. In the self-consistent field calculation, the electronic wave function of the system was obtained by the Pulay density mixing method. The Broyden, Fletcher, Goldfarb and Shannon (BFGS) methods were used to optimize the structure of the system. The generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) functional combined. The plane wave cutoff energy was 500 eV. The Monkhorst Pack method was used to sample the Brillouin area, and the k-point grid was $3 \times 3 \times 1$. In the process of structural optimization, the total energy convergence criterion of the system was 1.0×10^{-5} eV, the residual force convergence criterion was $0.03 \text{ eV} \times \text{Å}^{-1}$, the atomic displacement convergence criterion was 1.0×10^{-3} Å, and the volume stress convergence criterion was 0.05 GPa. The cutoff energy of the plane wave and the value of the k-point grid ensured the convergence of the total energy of the system.

The free energy change (ΔG) for adsorptions were determined as follows:

 $\Delta G = E_{total}\text{-} E_{sur}\text{-} E_{H} + \Delta E_{ZPE}\text{-}T\Delta S$

where E_{total} is the total energy for the adsorption state, E_{sur} is the energy of pure surface, E_{H} is the energy of H, ΔE_{ZPE} is the zero-point energy change and ΔS is the entropy change. As the vibrational entropy of H* in the adsorbed state is small, the entropy of adsorption of 1/2 H₂ is $S_{H} \approx -0.5S_{H2}$, where S_{H2} is the entropy of H₂ in the gas phase at the standard conditions. Therefore, the overall corrections were taken as in

$$\Delta GH^* = E_{total} - E_{sur} - E_{H2}/2 + 0.24 \text{ eV}$$

where E_{H2} is the energy of H_2 in gas phase.

Fig. S1. Schematic diagram illustrating the synthesis of ZIS, S_V -ZIS, and S_V -MZIS.

As shown in Fig. S1, ZIS containing sulfur vacancies (S_V -ZIS) was obtained by adding an excess of TAA, which can adsorb on the surface of primary ZIS crystals and inhibit crystal growth, thus creating sulfur vacancies^{1, 2}. Molybdenum doped S_V -ZIS (S_V -MZIS) was obtained by the addition of Na₂MoO₄. Since the atomic size of the molybdenum atom (1.40 Å) is similar to that of the Zn atom (1.39 Å), the molybdenum atom can enter the ZIS lattice by taking the place of the Zn atom to obtain S_V -MZIS, as demonstrated in our previous work ^{3, 4}.

Fig. S2. Schematic diagram illustrating the synthesis of V-LaVO₄, and R-LaVO₄.

Fig. S3. EDX of the 7% R-LaVO₄/S_V-MZIS shows the presence of Mo, Zn, In, S, La, V, and O.

Fig. S4. (a) XRD patterns of $LaVO_4$, V-LaVO₄. and R-LaVO₄. (b, c) Raw XRD patterns of R-LaVO₄, ZIS, S_V-MZIS, and X% R-LaVO₄/S_V-MZIS (X=5, 7, 9).

Fig. S5. (a, b) Water-droplet contact angles of $S_V\text{-}MZIS$ (a), and R-LaVO_4/S_V-MZIS (b).

Fig. S6. (a) Full survey XPS spectra of ZIS, S_V -MZIS, and 7% R-LaVO₄/ S_V -MZIS. (b, c) Zn 2p (b), In 3d (c) XPS spectra of ZIS, S_V -MZIS, and 7% R-LaVO₄/ S_V -MZIS. (d, e) V 2p (d), La 3d (e) XPS spectra of V-LaVO₄, R-LaVO₄, and 7% R-LaVO₄/ S_V -MZIS.

As shown in Fig. S6b, Zn $2p_{3/2}$ and Zn $2p_{1/2}$ of S_V-MZIS are located at 1022.61 and 1045.60 eV, respectively, and the binding energies are significantly lower than those of ZIS (1022.81 eV and 1045.79 eV). Fig. S6c shows the binding energies of In $3d_{5/2}$ and In $3d_{3/2}$ of S_V-MZIS are 445.31 and 452.87 eV, respectively, and the binding energies of S_V-MZIS are significantly lower than those of ZIS (445.52 and 453.05 eV), indicating that the coordination number of Zn and In is reduced, proving that there are sulfur vacancies in S_V-MZIS. As shown in Fig. S6d and S6e, the peak signals of $2p_{1/2}$ and $2p_{3/2}$ for V 2p and $3d_{3/2}$ and $3d_{5/2}$ for La 3d are observed in the V 2p and La 3d spectra, respectively. After complexation with S_V-MZIS, the peak signals of $2p_{1/2}$ and $2p_{3/2}$ of V 2p and $3d_{3/2}$ and $3d_{5/2}$ of La 3d are still observed in the V 2p and La 3d spectra, demonstrating the successful complexation of R-LaVO₄ and S_V-MZIS.

Element	La(%)	V(%)	O(%)	la:V:O
Lionnon	EG(70)	•(/0)	0(/0)	24 : 7 : 0
LaVO ₄	17.39	13.28	69.33	1:0.76:3.99
V-LaVO ₄	19.34	13.47	67.19	1:0.69:3.47
R-LaVO ₄	18.93	14.11	66.96	1:0.75:3.53

Table. S1. Elemental compositions of LaVO₄, V-LaVO₄, and R-LaVO₄ according to XPS.

Fig. S7. XPS spectra of 5%, 7%, and 9% R-LaVO₄/S_V-MZIS. (a) Zn 2p, (b) In 3d, (c) S 2p (d) La 3d, (e) V 2p, (f) O 1s.

Fig. S8. wavelength-dependent apparent quantum yield (AQY).

Photocatalytic hydrogen evolution AQY calculation process:

$$AQY(\%) = \frac{N_e}{N_p} = \frac{2 \times number \ of \ evolved \ H_2 \ molecules}{number \ of \ incident \ photons} \times 100\% = \frac{2 \times nH}{S}$$

When $\lambda = 420 \text{ nm}$

AQY=

$$\frac{2 \times 144.8 \times 10^{-6} \times 6.022 \times 10^{23} \times 6.626 \times 10^{-34} \times 3 \times 10^{8}}{0.075 \times 3600 \times 420 \times 10^{-9}} \times 100\%$$
=30.57%

Fig. S9. XPS spectra of R-LaVO₄/S_V-MZIS after photocatalytic test. (a) Zn 2p, (b) In 3d, (c) S 2p (d) Mo 3d, (e) La 3d, (f) V 2p, (g) O1s. (h) TEM image of R-LaVO₄/S_V-MZIS after photocatalytic test.

Fig. S10. Photocatalytic water overall splitting over 7% R-LaVO₄/S_V-MZIS.

Fig. S11. (a) EIS plots of V-LaVO₄, R-LaVO₄, ZIS, S_V-MZIS, and 7% R-LaVO₄/S_V-MZIS. (b)Photocurrent response of ZIS, S_V-MZIS, and 7% R-LaVO₄/S_V-MZIS. During the test, the catalyst falls off the FTO glass, resulting in a reduction in the amount of catalyst effectively tested. Thus, the photocurrent density decreases over time, which is not related to the stability of the photocatalyst.

Table. S2. Impedance values of V-LaVO₄, R-LaVO₄, ZIS, S_V -MZIS, and 7% R-LaVO₄/ S_V -MZIS obtained by fitting on the EIS results.

Sample	V-LaVO ₄	R-LaVO ₄	ZIS	S_V -MZIS	R-LaVO₄/S _V -MZIS
R _s	4.28 Ω	3.71 Ω	3.56 Ω	4.17 Ω	3.38 Ω
R _{ct}	95.74 Ω	84.04 Ω	130.77 Ω	104.56 Ω	72.55 Ω

Fig. S12. (a) Crystal structure diagram of S_V -MZIS. (b) Electron difference density of S_V -MZIS.

Fig. S13. DMPO spin-trapping electron paramagnetic resonance (EPR) spectra of DMPO-·O²⁻ of R-LaVO₄, S_V-MZIS, and R-LaVO₄/S_V-MZIS.

Fig. S14. Surface photovoltage (SPV) spectra of R-LaVO₄, S_V -MZIS, and R-LaVO₄/ S_V -MZIS.

References

- 1. C. Du, Q. Zhang, Z. Lin, B. Yan, C. Xia and G. Yang, *Applied Catalysis B: Environmental*, 2019, **248**, 193-201.
- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou and Y. Xie, *Adv Mater*, 2013, 25, 5807-5813.
- W. Guan, L. Zhang, P. Wang, Y. Wang, H. Wang, X. Dong, M. Meng, L. Sui, Z. Gan, L. Dong and L. Yu, *Nanomaterials*, 2022, 12, 3980.
- W. Guan, R. Jia, L. Zhang, M. Meng, P. Wang, Y. Wang, H. Wang, X. Dong, L. Sui, Z. Gan, L. Dong and L. Yu, *J Colloid Interface Sci*, 2023, 649, 685-693.