Supporting Information

Cooperative Template Strategy to Control Pore Structure of ZIF-Derived Carbon for Fuel Cell Cathode

Zhihong Huang, Mingjia Lu, Sucheng Liu, Longhai Zhang, Yangyang Chen, Lecheng Liang, Jiaxi Zhang, Huiyu Song, Li Du, and Zhiming Cui*

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Corresponding Author:

*E-mail: zmcui@scut.edu.cn. (Prof. Zhiming Cui)

Fig. S1. XRD patterns of p-ZIF-8-C and ZIF-8-C.

Fig. S2. Pore size distributions for p-ZIF-8-C with different molar amounts of SL (a) 2 mmol, (b) 5 mmol.

Fig. S3. SEM images of (a) p-ZIF-8-C and (b) ZIF-8-C.

Fig. S4. Conductivity diagram of p-ZIF-8-C and ZIF-8-C.

Fig. S5. Raman spectras of p-ZIF-8-C and ZIF-8-C.

Fig. S6. Raman spectras of Pt/p-ZIF-8-C and Pt/ZIF-8-C.

Fig. S7. HAADF-STEM image, elemental mappings of p-ZIF-8-C and the spectra along with wt.% and At.% of C, N and O in p-ZIF-8-C.

Fig. S8. HAADF-STEM image, elemental mappings of Pt/ZIF-8-C and the spectra along with wt.% and At.% of Pt, C, N and O in Pt/ZIF-8-C.

Fig. S9. The spectra along with wt.% and At.% of Pt, C, N and O in Pt/p-ZIF-8-C.

Fig. S10. TEM images and histograms of (a, d) Pt/p-ZIF-8-C, (b, e) Pt/ZIF-8-C, (c, f) JM 20wt.% Pt/C.

Fig. S11. (a) Survey XPS spectra, (b-c) C 1s and O1s of p-ZIF-8-C.

Fig. S12. (a) Survey XPS spectra, (b-d) Pt 4f, O 1s and C1s of Pt/p-ZIF-8-C.

Fig. S13. (a) Survey XPS spectra, (b-e) C 1s, N 1s, O 1s and Pt 4f of Pt/ZIF-8-C.

Fig. S14. (a-c) The CVs; (d) ECSA of Pt/p-ZIF-8-C, Pt/ZIF-8-C and JM 20wt.% Pt/C before and after 20k ADT.

Fig. S15. The $E_{1/2}$ of Pt/p-ZIF-8-C, Pt/ZIF-8-C and JM 20 wt.% Pt/C before and after 20k ADT.

Fig. S16. TEM images and histograms of (a, d) Pt/p-ZIF-8-C, (b, e) Pt/ZIF-8-C, (c, f) JM 20 wt.% Pt/C after 20k ADT.

Fig. S17. histogram of current density at 0.6V and maximum power density of Pt/p-ZIF-8-C, Pt/ZIF-8-C and JM 20 wt.% Pt/C as the cathode.

Fig. S18. Impedance of each part for Pt/p-ZIF-8-C, Pt/ZIF-8-C and 20 wt.% Pt/C measured at 800 mA cm⁻² under 100% RH.

Fig. S19. Structure models of different pores for MD simulation.

Figure S20. HR-TEM image of Pt NPs;

Fig. S21. LSV curves of (a) Pt/p-ZIF-8-C, (b)Pt/ZIF-8-C and (c) JM 20.wt% Pt/C after AST test under a high potential range (1.0–1.5 V).

Catalyst	E _{1/2} / V vs RHE	$\begin{array}{c} Mass activity \\ (A mg_{pt}^{\text{-1}}) \end{array}$	Ref.
Pt/p-ZIF-8-C	0.915	0.44	This work
Pt/ZIF-8-C	0.903	0.32	
Pt-Nb ₂ O ₅	—	0.220	ACS Catal. 2022, 12, 13523-13532.
40% Pt-Co ₆ Mo ₆ C ₂ / ^g C	0.92	0.271	J. Am. Chem.Soc. 2012, 13, 1954- 1957.
Pt/ALDTa ₂ O ₅ /C	0.891	0.222	
Pt/N-ALDTa ₂ O ₅ /C	0.908	0.280	Nano Energy 2018, 53, 716-725.
Pt/N,P-CNTs	0.91	0.285	<i>Electrochim. Acta</i> 2015, 158, 374- 382.
Pt/N-CNTs	0.87	0.165	
Pt/SG (sulfur-doped -graphene)	_	0.139	Adv. Funct. Mater. 2014, 24, 4325-
Pt/G (graphene)	—	0.101	4336.
Pt-SA/NCx	0.935	0.58	Adv. Funct. Mater. 2023, 33 , 2302582.
Pt/OMC–CNT	_	0.232	J. Mater. Chem. A 2013, 1, 1270- 1283
Pt/cPDA	_	0.94	Nat. Commun. 2022, 13, 6157.

Table S1. Performance comparisons of different ORR catalysts in RDE.