Supplementary Information

Fast response/recovery and sub-ppm ammonia gas sensors based on a

novel V₂CT_x@MoS₂ composite

Manyu Luo^{a,b}, Xingpeng Huang^{a,b}, Deshou Xiong^{a,b}, Sijin Cai^b, Shuang Li^{b*}, Zhenhong Jia^{a*} and Zhixian Gao^{b*}

^aSchool of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

^bTianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China

*Corresponding authors. E-mail: liza3320@163.com(Shuang Li) jzhh@xju.edu.cn(Zhenhong Jia) gaozhx@163.com(Zhixian Gao)

1

Fig. S1 Topography of synthetic materials. a) TEM image of V_2CT_x .b-f) SEM images of $V_2CT_x@MoS_2$ composite materials. b) $V_2CT_x@MoS_2-0.5$, c) $V_2CT_x@MoS_2-0.75$, d) V_2CT_x @MoS_2-1, e) V_2CT_x @MoS_2-2 and f) V_2CT_x @MoS_2-4.

Fig. S2 Spectra of synthesized samples with labeled standard XRD cards. a) V_2CT_x , b) MoS_2 .

Fig. S3 Raman spectra of $V_2CT_{x_2}$ MoS₂, and $V_2CT_x@MoS_2-2$.

Fig. S4 Response and baseline resistance of $V_2CT_x@MoS_2$ based sensors to 10 ppm ammonia at different temperatures.

Fig. S5 Comparison line plot of the response of V_2CT_x @MoS₂ composites with different mass ratios in the range of ammonia concentrations from 0.2 to 1 ppm.

Fig. S6 Sensing performance test of V_2CT_x and MoS_2 composite sensors with different masses at room temperature within 0.2-10ppm concentration and at 43% relative humidity. a) V_2CT_x @MoS_2-0.5, b) V_2CT_x @MoS_2-0.75, c) V_2CT_x @MoS_2-1 and d) V_2CT_x @MoS_2- 4.

Fig. S7 Nyquist diagram of V_2CT_x and MoS_2 composites at different mass ratios.

Fig. S8 Variation in resistance of a pure MoS_2 sensor at different ammonia concentrations at room temperature.

Fig. S9 Dynamic response of a pure MoS_2 sensor at different ammonia concentrations at room temperature.

Fig. S10 Comparison of the resistance of pure MoS_2 sensor, pure V2CT_x sensor and V₂CT_x@MoS₂-2 sensor with ammonia concentration.

Fig. S11 Comparison of the responses of pure MoS_2 sensors, pure V_2CT_x sensors and $V_2CT_x@MoS_2-2$ sensors with ammonia concentration.

Fig. S12 Variation of resistance of $V_2CT_x@MoS_2-2$ composite sensor at room temperature under different humidity.

Computational details

Spin-polarized DFT calculations were performed using the Vienna *ab initio* simulation package (VASP) code^{1, 2}. The projector augmented wave method (PAW) and the Perdew–Burke–Ernzerhof (PBE) exchange-correlation function were performed to describe both valence electron and core interactions ^{3, 4}. A plane wave basis with a kinetic cut-off energy of 450 eV was utilized. All structures were fully optimized until energy and residual force convergence criteria of 10^{-5} eV and 0.03 eV/Å were met. The DFT-D3 method⁵ was utilized for accurate estimation of adsorption strength. Sampling was conducted using a $1 \times 1 \times 1$ Monkhorst-Pack grid for general calculations, while a dense $3 \times 3 \times 1$ Monkhorst-Pack grid was employed for electronic property calculations.

The difference in charge density is defined as $\Delta \rho = \rho_{*mol} - \rho_{*} - \rho_{mol}$, where ρ_{*mol} , ρ_{*mol} , and ρ_{mol} represent the electron densities of the slab with the adsorbed molecule (including NH₃, CH₂O, CH₃OH, and CH₃COCH₃), the isolated slab, and the isolated molecule, respectively. Additionally, the adsorption energy E_{ads} per molecule is defined as $E_{ads} = E_{*mol} - E_{*} - E_{mol}$, where E_{*mol} stands for the energy of the monolayer with the adsorbed molecule, E_{*} is the energy of a clear monolayer, and E_{mol} is the energy of an isolated molecule under vacuum.

Fig.S13 a) The constructed initial models of ammonia (NH₃), acetone (C_3H_6O), methanol (CH₄O) and formaldehyde (CH₂O), b) V₂C(OH)₂ and V₂C(OH)₂@2H-MoS₂(002).

Fig.S14 Model diagram of a) $V_2C(OH)_2$ adsorbed ammonia (NH₃), acetone (C₃H₆O), methanol (CH₄O) and formaldehyde (CH₂O) molecules, b) $V_2C(OH)_2@MoS_2$ adsorbed ammonia (NH₃), acetone (C₃H₆O), methanol (CH₄O) and formaldehyde (CH₂O) molecules, c) Difference in charge density of $V_2C(OH)_2@MoS_2$ model with ammonia, acetone, methanol, and formaldehyde molecules.

Fig.S15 UPS spectra of a) V_2CT_x , b) MoS_2 , c) $V_2CT_x@MoS_2-2$.

	Detection	LOD	Response	Recovery time(s)	Sensitivity	Ref.
Material	range	(ppm)	time(s)			
	(ppm)					
Nb_2CT_x	1-100	1	105s@	143s@	9.3%@	6
/PANI	1 100		10ppm	10ppm	1ppm	
$Ti_3C_2T_x$	0.5-100	0.5	36s@	44s@		7
/SnO ₂	0.5-100		50ppm	50ppm	-	
MoS ₂ @	4 50	1	45s@	53 s@		8
MoO ₃	1-50		50ppm	50ppm	-	
$Ti_3C_2T_x/TiO_2$	10-800	0.5	117s@	88s@	6.31%@	9
/MoS ₂			100ppm	100ppm	100ppm	5
PANI/Pt	4 500	0.25	15s@	103s@	16.64%@	10
/MoS ₂	1-500		50ppm	50ppm	50ppm	
MoS ₂	25 500	0.72	80s@	70s@	40%@	11
/graphene	25-500		200ppm	200ppm	200ppm	
$Ti_3C_2T_x$	10 100	10	-	-	7.2%@	12
/graphene	10-100				100ppm	
PANI			276	266@		
/MWCNTs	0.25-20	0.25	525@	0.25 a a m	-	13
/MoS ₂			0.25ppm	0.25ppm		
V ₂ CT _x @MoS ₂	0.2-1	0.129	9.82s@	24.22s@	8.71%@	This
			1ppm	1ppm	0.2ppm	work

Table S1. Comparison of the performance of the proposed sensor and previously reported ammonia sensors

Materials	Response	Year published	Ref.
Ti ₃ C ₂	2%@50ppm	2019	14
rGO/ZnO	3.05%@50ppm	2016	15
Ti ₃ C ₂ T _x @TiO ₂	3.1%@10ppm	2019	16
PANI/rGO	13%@15ppm	2019	17
NiWO4/MWCNTs	13.07%@50ppm	2021	18
SWCNT/PPY/PA	2.2%@1ppm	2020	19
PEDOT:PSS/N-MXene	13%@10ppm	2021	20
Ti3C2Tx/PVDF-ZIF-67	4.7%@25ppm	2024	21

Table S2 Comparison of this study with previously reported ammonia sensors in terms of response values

Fig. S16 Gas sensing mechanism toward NH_3 gas for the $V_2CT_x@MoS_2$ nanohybrid.

References

- 1. G. Kresse and J. Furthmuller, *Phys Rev B Condens Matter*, 1996, **54**, 11169-11186.
- 2. J. Hafner, J Comput Chem, 2008, **29**, 2044-2078.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys Rev Lett*, 1996, **77**, 3865-3868.
- 4. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 5. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J Chem Phys*, 2010, **132**, 154104.
- 6. S. Wang, B. Liu, Z. Duan, Q. Zhao, Y. Zhang, G. Xie, Y. Jiang, S. Li and H. Tai, *Sensors and Actuators B: Chemical*, 2021, **327**,128923.
- 7. T. He, W. Liu, T. Lv, M. Ma, Z. Liu, A. Vasiliev and X. Li, *Sensors and Actuators B: Chemical*, 2021, **329**,129275.
- 8. S. Singh, J. Deb, U. Sarkar and S. Sharma, ACS Sustainable Chemistry & Engineering, 2021, **9**, 7328-7340.
- 9. X. Tian, L. Yao, X. Cui, R. Zhao, T. Chen, X. Xiao and Y. Wang, *Journal of Materials Chemistry A*, 2022, **10**, 5505-5519.
- 10. X. Tian, X. Cui, Y. Xiao, T. Chen, X. Xiao and Y. Wang, ACS Applied Materials & Interfaces, 2023, **15**, 9604-9617.
- 11. A. Jian, J. Wang, H. Lin, S. Xu, D. Han, Z. Yuan and K. Zhuo, *ACS Omega*, 2022, **7**, 11664-11670.
- 12. S. H. Lee, W. Eom, H. Shin, R. B. Ambade, J. H. Bang, H. W. Kim and T. H. Han, ACS Applied Materials & Interfaces, 2020, **12**, 10434-10442.
- 13. D. Zhang, Z. Wu, P. Li, X. Zong, G. Dong and Y. Zhang, *Sensors and Actuators B: Chemical*, 2018, **258**, 895-905.
- 14. M. Wu, M. He, Q. Hu, Q. Wu, G. Sun, L. Xie, Z. Zhang, Z. Zhu and A. Zhou, *ACS Sensors*, 2019, **4**, 2763-2770.
- 15. H. Tai, Z. Yuan, W. Zheng, Z. Ye, C. Liu and X. Du, *Nanoscale Research Letters*, 2016, **11**, 1-8.
- 16. H. Tai, Z. Duan, Z. He, X. Li, J. Xu, B. Liu and Y. Jiang, *Sensors and Actuators B: Chemical*, 2019, **298**,126874.
- 17. C.-T. Lee and Y.-S. Wang, *Journal of Alloys and Compounds*, 2019, **789**, 693-696.
- M. Yang, C. Au, G. Deng, S. Mathur, Q. Huang, X. Luo, G. Xie, H. Tai, Y. Jiang, C. Chen, Z. Cui, X. Liu, C. He, Y. Su and J. Chen, ACS Applied Materials & Interfaces, 2021, 13, 52850-52860.
- 19. W. Xuan Du, H.-J. Lee, J.-H. Byeon, J.-S. Kim, K.-S. Cho, S. Kang, M. Takada and J.-Y. Kim, *Journal of Materials Chemistry C*, 2020, **8**, 15609-15615.
- 20. J. Qiu, X. Xia, Z. Hu, S. Zhou, Y. Wang, Y. Wang, R. Zhang, J. Li and Y. Zhou, *Nanotechnology*, 2021, **33**,065501.
- 21. N. K. Arkoti and K. Pal, ACS Sensors, 2024, DOI: 10.1021/acssensors.3c02551.