Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024 Table S1 Energy storage parameters of BF-, BF-BT-, BNT- and NN-based ceramic systems.

Ceramics	$W_{\rm rec}$ (J/cm ³)	η (%)	$E_{\rm b}({\rm kV/cm})$	ho (J/kV·cm ²)	reference
$Bi_{0.83}Sm_{0.17}Fe_{0.95}Sc_{0.05}O_3$	2.21	76	230	9.6×10^{-3}	[41]
$\Box 0.67Bi_{0.9}Sm_{0.1}FeO_3-0.33BaTiO_3$	2.8	55.8	200	14.0×10^{-3}	[41]
$\Box 0.56BiFeO_{3}\text{-}0.3BaTiO_{3}\text{-}0.14AgNbO_{3}$	2.11	84	195	10.8×10^{-3}	[15]
$\Box 0.75BiFeO_3$ - $\Box 0.25Ba(Zn_{1/2}Ta_{2/3})O_3$	2.56	75	160	16.0×10^{-3}	[41]
□0.75BiNdFeO ₃ -0.12SrBaTiO ₃	1.74	74	150	16.6×10^{-3}	[41]
$0.62BiFeO_3 - 0.3BaTiO_3 - 0.08Nd(Zn_{0.5}Zr_{0.5})O_3$	2.45	72	240	10.2×10^{-3}	[45]
$0.61BiFeO_{3}\text{-}0.33(Ba_{0.8}Sr_{0.2})TiO_{3}\text{-}0.06La(Mg_{2/3}Nb_{1/3})O_{3}$	3.38	59	230	14.6×10^{-3}	[42]
$0.65BiFeO_3$ - $0.3BaTiO_3$ - $0.05Bi(Zn_{2/3}Nb_{1/3})O_3$	2.1	55.7	180	11.6×10^{-3}	[42]
$0.56BiFeO_3$ - $0.3BaTiO_3$ - $0.14Ba(Zn_{1/3}Nb_{2/3})O_3$	1.61	~65	180	8.9×10^{-3}	[42]
0.61BiFeO3-0.33BaTiO3-0.06Ba(Mg1/3Nb2/3)O3	1.56	75	125	12.4×10^{-3}	[42]
0.7(0.67BiFeO ₃ -0.33BaTiO ₃)-0.3(Sr _{0.7} Bi _{0.2})TiO ₃	2.4	90.4	180	13.3×10^{-3}	[42]
$0.75(Bi_{0.85}Nd_{0.15})FeO_3$ - $0.25BaTiO_3$	1.8	41.3	170	10.5×10^{-3}	[42]
$\Box 0.52Bi_{0.98}La_{0.02}FeO_{3}\text{-}0.48BaTiO_{3}$	1.22	58	140	8.71×10^{-3}	[42]
$0.65Bi_{0.5}Na_{0.5}TiO_{3}\text{-}0.35BaTiO_{3}\text{-}SrZr_{0.5}Ti_{0.5}O_{3}$	4.32	93.5	302	14.3×10^{-3}	[43]
$\square \square 0.8BNT-0.2SrNb_{0.5}Al_{0.5}O_{3}$	6.5	89	480	13.5×10^{-3}	[44]
$\square 0.16BNT-0.8NaNbO_{3}-0.04CaZrO_{3}$	3.7	82.1	400	9.2×10^{-3}	[44]
$(Na_{0.73}Bi_{0.08}Sm_{0.01})(Nb_{0.91}Ta_{0.09})O_3$	1.66	83.6	214	7.7×10^{-3}	[45]
$0.85(0.92 NaNbO_3 - 0.08 Bi(Mg_{0.5}Ti_{0.5})O_3) - 0.15 SrTiO_3$	6	81	300	20.0×10^{-3}	[46]
$0.2 NaNbO_3$ - $0.8 Sm(Mg_{0.5}Zr_{0.5})O_3$	4.3	85.6	560	7.6×10^{-3}	[47]
□0.85(0.7BiFeO ₃ -0.3BaTiO ₃)-0.15NaNbO ₃	8.2	70	325	25.2×10^{-3}	[14]
$\Box \Box Bi_{0.595}Ba_{0.255}Na_{0.15}Fe_{0.595}Ti_{0.255}Ta_{0.15}O_{3}$	8.7	65	350 (1Hz)	24.9×10^{-3}	This work
$Bi_{0.595}Ba_{0.255}Na_{0.15}Fe_{0.595}Ti_{0.255}Ta_{0.15}O_3$	9.6	77	350 (10 Hz)	27.4×10^{-3}	This work
$\Box Bi_{0.56}Ba_{0.24}Na_{0.2}Fe_{0.56}Ti_{0.24}Ta_{0.2}O_{3}$	8.7	66	550 (1 Hz)	15.8×10^{-3}	This work
$\Box Bi_{0.56}Ba_{0.24}Na_{0.2}Fe_{0.56}Ti_{0.24}Ta_{0.2}O_{3}$	10.3	68	550 (10 Hz)	18.7×10^{-3}	This work

<i>x</i> - NT	$W_{\rm rec}$ (J/cm ³)	ΔE (kV/cm)	ρ (J/kV·cm ²)	Measuring frequency
0	2	175	11.4×10^{-3}	1 Hz
0.05	5.5	275	20.0×10^{-3}	1 Hz
0.10	7.4	350	21.1 × 10 ⁻³	1 Hz
□0.15	8.7	350	24.9×10^{-3}	1 Hz
0.15	9.6	350	27.4×10^{-3}	10 Hz
0.20	8.7	550	15.8×10^{-3}	1 Hz
0.20	10.3	550	18.7×10^{-3}	10 Hz
0.30	4.6	425	10.8 ×10 ⁻³	1 Hz

Table S2 \Box Recoverable energy storage intensity (ρ). The calculated ρ values were obtained using
the relation $\rho = W_{\rm rec} / \Delta E$, based on Fig. 5(b,c,e,f).

$$(1-x)(0.7BiFeO_3 - 0.3BaTiO_3) - xNaTaO_3$$

$$S_{config} = -R \left[\sum_{(A-site\ cations)} x_i ln(x_i) + \sum_{(B-site\ cations)} x_j ln(x_j) + \sum_{(anions)} x_k ln(x_k) \right]$$
$$at\ x = 0$$

$$(Bi_{1.0}Fe_{1.0})_{0.7}(Ba_{1.0}Ti_{1.0})_{0.3}O_3$$

$$S_{config} = -R[2 * 0.7 \ln(0.7) + 2 * 0.3 \ln(0.3) + 1.0 \ln(1.0)]$$

$$S_{config} = -R[2 * 0.7(-0.356) + 2 * 0.3(-1.203) + 0]$$

$$S_{config} = R[0.498 + 0.721] = 1.21R$$

$$at x = 0.30$$

$$(Bi_{0.70}Fe_{0.70})_{0.7}(Ba_{0.70}Ti_{0.70})_{0.3}Na_{0.30}Ta_{0.30}O_3$$

$$\begin{split} S_{config} &= -R[2*0.49\ln(0.49) + 2*0.21\ln(0.21) + 2*0.30\ln(0.30) + 1.0\ln(1.0)] \\ S_{config} &= -R[2*0.49(-0.713) + 2*0.21(-1.560) + 2*0.30(1.203) + 0] \\ S_{config} &= R[0.698 + 0.655 + 0.721] = 2.07R \end{split}$$

Figure S1 The calculation process of configuration entropy.

Side view

Figure S2 Electrode's configuration for the P-E loop experiment.

Figure S3 Identification of the cubic Fd-3m Na₂Ta₂O₆ phase in the NaTaO₃-contained specimens.

Figure S4 Variations of different phase percentages (wt.%) of BBNFTT-*x* ceramics.

Figure S5 (a) P_{max} and P_r measured at E_b and (b) E_b , W_{rec} , and η vs. x of BBNFTT-x ceramics.

Figure S6 Temperature coefficients of capacitance (TCC) for BBNFTT-*x* from x = 0 to x = 0.30 for measuring frequency of 1 kHz.

Figure S7 EDX spectra of (a-c) BBNFTT-0.1 and (d-f) BBNFTT-0.2.