Supporting Information

A High-Current Initiated Formation Strategy for Improved Cycling Stability of Anode-Free Lithium Metal Batteries

Kangning Cai^{1,2,†}, Mengtian Zhang^{1,2,†}, Geng Zhong^{1,2}, Guohuang Kang^{1,2}, Jie Biao^{1,2}, Chuang Li^{1,2}, Yanru Liu^{1,2}, Guangmin Zhou^{1,2,*}, Feiyu Kang^{1,2,*}, Yidan Cao^{1,2,*}

¹ Shenzhen Geim Graphene Center, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

² Tsinghua-Berkeley Shenzhen Institute, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

† These authors were equal major contributors.

* Corresponding Authors:

yidancao@sz.tsinghua.edu.cn (Yidan Cao), fykang@sz.tsinghua.edu.cn (Feiyu Kang), guangminzhou@sz.tsinghua.edu.cn (Guangmin Zhou)

Finite element simulation

Based on the COMSOL Multiphysics 6.0 software, we performed the finite element analysis for the nucleation and growth process of Li as well as the properties of diffuse double layer. The following are the simulation equations:

1. Nucleation and growth process of Li

Mass transport

In the electrolyte, the transfer of ions is driven by migration because of electric field and diffusion because of concentration gradient which are governed by the Nernst–Planck equation:

$$N_i = -D_i (\nabla c_{0,i} - \frac{z_i F c_{0,i}}{RT} \nabla \Phi)$$

Where N_i is flux, D_i , z_i and $c_{0,i}$ is the diffusion coefficient, charge and concentration of species *i*, respectively. *F* is the Faraday's constant, *R* is the ideal gas constant, *T* is the Kelvin temperature and Φ is the electrolyte potential. Meanwhile, the ions in the electrolyte follows the equation of conservation of mass and charge:

$$\frac{\partial c_i}{\partial t} + \nabla \times N_i = 0$$
$$\sum_i z_i c_i = 0$$

Where c_i is the concentration, z_i is the valence of each species in the electrolyte. Charge transfer

Basically, Li^+ are transported from the bulk solution to the anode surface then reduced to Li-atom, and at the interface of the electrolyte and the anode, the deposition process of Li^+ can be described as the simplified reaction:

$$Li^+ + e^- \leftrightarrow Li$$

The electrochemical behaviors of Li⁺ at the electrode-electrolyte interface could be described by the famous Butler-Volmer equation:

$$i_{loc} = i_{ex} \left[\exp\left(\frac{\alpha_a F \eta}{RT}\right) - \exp\left(\frac{-\alpha_c F \eta}{RT}\right) \right]$$

Where i_{loc} is the local current density, which could be used to quantify the local reaction rate. η is overpotential, α_a and α_c are the anodic and cathodic charge transfer coefficients, respectively, and i_{ex} is exchange current density which is defined as the current density flowing equally in each direction at the reversible potential and can be used to characterize the ease of a reaction to occur, moreover, it is closely related to the electron transfer kinetics and the concentration gradient near the surface:

$$i_{ex} = i_e \prod_{i,v_j > 0} \left(\frac{c_{Li}^{+}}{c_b} \right)^{\frac{\alpha_a v_j}{n_j}} \prod_{i,v_j < 0} \left(\frac{c_{Li}^{+}}{c_b} \right)^{\frac{-\alpha_c v_j}{n_j}} c_{Li}^{+}$$

Therefore, the i_{ex} is greatly influenced by the c_b which is also refers to the concentration gradient. Where Li^+ and c_b is the concentration of Li⁺ near the anode and in the bulk electrolyte, respectively, i_e is the current density to represent the kinetics of electrons, v_j is the stoichiometric coefficients, n_j is the number of electrons transferred. and the η is the overpotential.

Where ϕ_s and ϕ_l is the solid phase and liquid phase potential, respectively, U_{eq} is the equilibrium potential of the reaction.

Morphology evolution

Based on the above equations, the i_{loc} is closely related to the Li⁺ concentration distribution and the overpotential at the anode surface. Therefore, boundary conditions near the substrate can be described as:

$$N_{Li^{+}} \cdot n = -\frac{i_0}{2F} \left[\exp\left(\frac{\alpha_a F \eta}{RT}\right) - \frac{c_{Li^{+}}}{c_0} \exp\left[\frac{\alpha_c F \eta}{RT}\right] \right]$$

Where n is the normal vector of the boundary.

Due to the initial nucleation behaviors of Li are highly related to the overpotential. Specifically, we set a random distribution function to simulate the nucleation morphology, which consists with the law that the radius of the nucleation is inversely proportional to the overpotential and the nucleation density is proportional to the cubic of the overpotential.

2. Diffuse double layer

Close to an electrode surface, ions in the electrolyte are attracted and repelled by unscreened excess charge on the electrode. This region is called the diffuse double layer. Its size is normally a few nanometers away from the electrode surface but significantly influence the properties of SEI. The following are the governing equation for simulating the diffuse double layer

The concentrations, c_i of two ions of opposite charge (+1/-1) are solved for in the electrolyte phase. The fluxes of the ions are described by the Nernst–Planck equation, and the ions follow the law of conservation of mass and charge, which is consistent with the equations in the above. For the potential, the Poisson equation stats:

$$\nabla \cdot (-\varepsilon \nabla \Phi) = \rho$$

where ε is the permittivity and ρ is the charge density. The charge density depends on the ion concentrations according to:

 $\rho = F(c_+ - c_-)$

Figure S1. The geometry used for the FEM simulation.

Figure S2. FEM simulation results for the anode morphology evolution of two different formation strategies.

Figure S3. FEM simulation results for the Li^+ concentration evolution in the electrolyte of two different formation strategies.

Figure S4. Comparison of Li⁺ concentration evolution under two different charging models. (10 mA cm⁻² for 40 mAh cm⁻² and 10 mA cm⁻²+0.1 mA cm⁻² for 40 mAh cm⁻²)

Figure S5. SEM images of Li nuclei layers at varied current densities with gradually increased deposition capacity. (denoted as current density-deposition capacity, eg, 1-0.1 represents that Cu substrate was deposited with lithium at the current density of 1 mA cm⁻² and areal capacity of 0.1 mAh cm⁻²)

Figure S6. (a) Current vs time profiles for the two types of formation strategies. (b) Schematics of the Li nucleation and growth process under the two types of formation strategies.

Figure S7. Comparison of (a) Li plating/stripping Coulombic efficiency (CEs) in Li||Cu cells which were plated at the current density of 0.1 mA cm⁻² and 10 mA cm⁻² with the capacity of 0.3 mAh cm⁻² and then cycled at the current density and capacity of 2 mA cm⁻² and 1 mAh cm⁻², and (b)corresponding voltage hysteresis.

Figure S8. The modified Aurbach CE of Li plating/stripping after Li deposition at different current densities.

Figure S9. Corresponding voltage hysteresis of Li||Cu cells which were plated at the current density of 0.1 mA cm⁻² and 10 mA cm⁻² with the capacity of 0.3 mAh cm⁻² and 0.5 mAh cm⁻², and then cycled at (a) 0.5 mA cm⁻² and 0.5 mAh cm⁻², (b) 1 mA cm⁻² and 1 mAh cm⁻².

Figure S10. Galvanostatic charge–discharge curves of (a) 0.1-0.5 and (b) 10-0.5 cells at 1 mA cm⁻² and 1 mAh cm⁻² after 1, 50, 100, 150 and 200 cycles.

Figure S11. The voltage profiles of Li-Li symmetric cell at 1 mA cm⁻², 1 mAh cm⁻². The symmetric cells were assembled with two Cu foils which were plated at 0.1 mA cm⁻² or 10 mA cm⁻² for 0.3 mAh cm⁻² and then plated at 1 mA cm⁻² for 5 mAh cm⁻².

Figure S12. (a) Nyquist plots of 0.1-0.5 and 10-0.5 cells after 1 and 50 cycles at 1 mA cm^{-2} -1 mAh cm^{-2} , and (b) corresponding equivalent circuit model.

Figure S13. Electrochemical characteristics of 0.1-0.3 and 10-0.3 cells cycled at 1 mA cm⁻²-1 mAh cm⁻². (a) Nyquist plots and (b) Calculated SEI resistance (R_{SEI}) and charge transfer resistance (R_{CT}) of Li||Cu cells after the 1st Li stripping to 1V.

Figure S14. Electrochemical performances of Li||Cu cells with various formation strategies. (a-c) Comparison of the Li plating/stripping Coulombic efficiency (CEs) in Li||Cu cells at 1 mA cm⁻²-1 mAh cm⁻², which were plated at the current density of 0.1 mA cm⁻² ~20 mA cm⁻² with the areal capacity of 0.1~0.7 mAh cm⁻², and corresponding (d-e) Voltage hysteresis.

Figure S15. SEM images of Li nucleation and growth morphology of 0.1-0.3 and 10-0.3 cells cycled at 1 mA cm⁻², 1 mAh cm⁻² (The first deposition).

Figure S16. SEM images of Li deposit morphology of 0.1-0.3 and 10-0.3 cells cycled at 1 mA cm⁻², 1 mAh cm⁻². (After 20 cycles)

Figure S17. SEM images of the top view of Cu current collector after 1st Li striping in (a)0.1-0.3 and (b)10-0.3 cells cycled at 1 mA cm⁻², 1 mAh cm⁻².

Figure S18. Morphologies of Li deposition on Cu current collectors in Cu||LFP anodefree cells with deposition capacity of 0.3 mAh cm⁻² at the current density of (a) 0.1C (\sim 0.16 mA cm⁻²) and (b) 10 mA cm⁻².

Figure S19. Electrochemical performance of Cu||LFP anode-free cells without or with high-current initiated formation strategy: 0.1C Form; 10-0.3+0.05C Form; 10-0.1+0.1C Form; 10-0.3+0.1C Form; 10-0.5+0.1C Form; 10-0.3+0.5C Form (Electrolyte for all tests was 1 M LiTFSI in DOL/DME (volume ratio 1/1) with 2 wt% LiNO₃.) (a) Cycling performance. (b) Coulombic efficiency. (c) Comparison of capacity retention after 100 cycles. (d-g) Galvanostatic charge–discharge curves with various formation strategies.

Figure S20. Electrochemical performance of Cu||LFP anode-free cells without or with high-current initiated formation strategy (Electrolyte for all tests was 1 M LiTFSI in DOL/DME (volume ratio 1/1) with 2 wt% LiNO₃.) (a) Cycling performance. (b-c) Galvanostatic charge–discharge curves with various formation strategies.

Cathode /Areal Capacity (mAh cm ⁻²)	Electrolyte	C/D Rate	Cycle Number	Capacity Retention (%)	C.E (%)	References
LFP/1.6	3 M LiFSI in DME/DOL (1:1, v/v)	0.5mA cm ⁻²	100	40	98.78	Concentrated salt and resting protocol, 2019 ¹
NCM622/3.5	[P1222][FSI] LiFSI (1:1, mol:mol)	0.5C	50	55.5	99.15	lonic liquid electrolyte and fast formation protocol, 2021 ²
LFP/1.4	1.6 M LiFSI in DME/TTE (v/v 1:4)	1/3C	100	41.5	1	Potential hold method, 2022 ³
LFP/2.7	1.5M LiFSI in DME/HFE/DOL (0.8/1/0.2, vol.%)	1mA cm ⁻² 2mA cm ⁻²	100	51.0	99.4 (Within 50-100 cycle)	Dynamic galvanic corrosion, 2023 ⁴
LFP/2	1 M LiFSI in DME:TTE (1/2, vol.%)	1mA cm ⁻² 0.5mA cm ⁻²	100	38.3	/	P-stripping strategy, 2023 ⁵
LFP/1.5	1 M LiTFSI in DOL/DME+2wt% LiNO ₃	0.5C/1C	50 100	70.8 54.7	98.7 99.0	This work

Table S1 Coulombic efficiency (CE) of high-current initiated formation strategy compared with other reported results.

Cell component	Parameter	Value	
	Reversible capacity	150 mAh g ⁻¹	
	Active material loading	91.5%	
	Arial weight	11.9 mg cm ⁻²	
LFP Cathode	Area capacity	1.6 mAh cm ⁻²	
(including Al foil)	Electrode length	80 mm	
	Electrode width	56 mm	
	Thickness of AI foil	20 µm	
	Number of layers	1	
	Thickness	12 µm	
Cu foil	Number of layers	1	
Separator	Thickness	16 µm	
Electrolyte	Volume	0.5 mL	
	Length	100 mm	
Pouch cell	Width	80 mm	
	Total capacity	~71 mAh	

Table S2 Cell parameters of the anode-free pouch cell.

Supporting reference

- T. T. Beyene, B. A. Jote, Z. T. Wondimkun, B. W. Olbassa, C.-J. Huang, B. Thirumalraj, C.-H. Wang, W.-N. Su, H. Dai and B.-J. Hwang, ACS Applied Materials & Interfaces, 2019, 11, 31962-31971.
- 2. T. Pathirana, D. A. Rakov, F. Chen, M. Forsyth, R. Kerr and P. C. Howlett, *ACS Applied Energy Materials*, 2021, **4**, 6399-6407.
- 3. W. Shin and A. Manthiram, *Angewandte Chemie International Edition*, 2022, **61**, e202115909.
- 4. J.-F. Ding, R. Xu, Y. Xiao, S. Zhang, T.-L. Song, C. Yan and J.-Q. Huang, *Advanced Energy Materials*, 2023, **13**, 2204305.
- 5. Y. Xiao, R. Xu, L. Xu, Y.-X. Zhan, J.-F. Ding, S. Zhang, Z.-H. Li, C. Yan and J.-Q. Huang, *Advanced Energy Materials*, 2023, **13**, 2300959.