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Details of preparation of SANix-O-2DRGO

First, dispersing GO in aqueous solution obtained solution A of 10 mg/ml.
Mixing nickel salt with water ultrasonic can obtain solution B of 10 mg/ml. Solution
B with a certain gradient was mixed and stirred for 12 hours with 20 ml of solution A.
Under the stirring condition, 5 ml of fresh sodium borohydride solution prepared on
site was added. The stirring continued until the reaction was complete, and solution C
was obtained. Solution C was extracted and separated by a 0.26pum water filter
membrane to obtain the complex. The complex was repeatedly washed with deionized
water and dried at 80°C for 12 hours to obtain the high dispersion and high loading
SANiX-O-2DRGO (X=0.5~5).

Catalysis characterizations of SANix-O-2DRGO

The D8 ADVANCE X-ray Diffraction (XRD) is produced from Bruker,
Germany. In the experiment, the scanning angles and rates are 5~90°and 2°/min,
respectively. The iS50R of Fourier transform infrared spectroscopy (FTIR) is
produced by Thermo Fisher, USA. And the experimental spectral band of FTIR is in
the range of 400~4000 cm!. In-situ diffuse reflectance infrared fourier transform
spectroscopy (XPS) is used to study the elemental species, chemical valence, and
elemental content of the materials. The pore structure and surface area of the materials
are characterized by BELSORP-max II, Japan. LabRAM HR Evolution Raman
spectrometer (Raman) is from HORIBA Jobin Yvon, France, which is used to
characterize the location of defects in the samples. Hydrogen-Programmed
Temperature Reductions (H,-TPR) are carried out on samples by using the TP-5078
Atochem chemisorption/desorption instrument manufactured by Pioid, China. The
thermal stability of various samples is investigated by using the Thermogravimetric
analyzer (TGA), which is manufactured by Mettler-Toledo, Switzerland. The Field
emission transmission electron microscopy (FE-TEM) and the high resolution
transmission electron microscopy (HR-TEM) are Talos F200S from FEI, Czech
Republic.



Results and Discussion

The XRD pattern is shown in Figure S5, all peaks of SANix-O-2DRGO
(X=0.5~5) remain highly consistent, containing mainly two typical diffraction peaks
at 20=24.7° and 40.4°. It is noteworthy that an additional small carbon (100) peak is
presented around 26=40.4°, related to the degree of condensation of the carbon
structure[1, 2]. No Ni species related diffraction peaks are observed for any of the
SANix-O-2DRGO (X=0.5~5) due to the low loading of Ni, which is consistent with
no metal clusters being observed in the TEM images. The TGA profile of the SANix-
0-2DRGO (X=0.5~5) is presented in Figure S6, no significant weight loss steps were
observed during the room temperature to 600 °C. The weight loss below 300 °C is
less than 10%, implying that the catalyst is thermally stable and suitable for thermal
catalysis experiments.

The Brunauer—-Emmett-Teller (BET) is used to characterize the surface area and
pore volume of SANix-O-2DRGO (X=0.5~5). As shown in Figure S7, all samples
have a similar V-shaped isotherm with an H2a-type hysteresis loop. H2a-type
hysteresis loop production is due to cavitation controlled evaporation of the pore size
within a narrow range during desorption, and perhaps the presence of pore blockage
or percolation[3]. The pore diameter of SANix-O-2DRGO (X=0.5~5) is in the range
of 6.42~17.39 nm. The specific surface area of SANix-O-2DRGO (X=1~5) is above
90 m? g!' except SANiys-O-2DRGO (Table S3). This is related to the low metal
content of SANijs-O-2DRGO, which leads to a small gap between RGO layers [4].
ICP-MS was used to characterize the content of Ni elements in the materials. The
results are shown in Table S4, Ni content of the samples tended to increase with the
addition of the NiCl,*6H,0. The actual contents of SANix-O-2DRGO (X=0.5~5) are
0.73%, 1.86%, 3.43%, 5.44%, 8.13% and 10.16%, respectively. The metal content of
single atom catalysts is generally extremely low [5-8]. Interestingly, the SANis-O-
2DRGO remains atomically distributed with high Ni loading.

The H,-TPR characterized the redox ability of the SANix-O-2DRGO (X=0.5~5).

As shown in Figure S11, with the increase of metal loading the reduction temperature
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of SANix-O-2DRGO (X=0.5~5) is almost constant, while the intensity of the
reduction peaks is rising. Interestingly, the SANix-O-2DRGO (X=3~5) samples show
a more intense peak at 397°C, which is produced by the reduction of Ni(Il),
corresponding to the reduction peak of the higher valence nickel ions [9]. SANix-O-
2DRGO (X=1~2) shows the same reduction peak at the same position, but with a less
intense peak. At the same time, SANijs-O-2DRGO also shows a small reduction peak
at the same position, while RGO shows no peak at this position. Although there are no
clear changes in the overall peak position, the intensity of overall peaks is consistent
with the change in the catalytic performance of ethyl acetate, with SANis-O-2DRGO >
SANiy-O-2DRGO > SANi;-O-2DRGO > SANi,-O-2DRGO = SANi;-O-2DRGO >
SANi5-O-2DRGO > RGO. Therefore, it is presumed that the single Ni atoms loaded
on the RGO are the active site for the catalytic reaction, and it is demonstrated that the
catalytic activity increases with the increase in metal loading. Used and fresh SANis-
O-2DRGO presented typical carbon features with distinct D bonds and G bonds in the
Raman spectra (Figure S12). The ratio of D band intensity to G band intensity (ID/IG)
for used SANis-O-2DRGO is 1.27, approximately equal to 1.42 for fresh SANis-O-
2DRGO, indicating defects hardly participate in the catalytic oxidation reaction [10].

Ethyl acetate-temperature-programmed desorption (TPD) was investigated. In
the experiment, helium was introduced at 150°C for 1 hour before pretreatment, and
ethyl acetate was introduced for adsorption for 2 hours. The temperature was
programmed under helium. The control group was treated with helium gas. From the
Figure S15, it can be concluded that the maximum desorption rate of ethyl acetate is
reached at 85 ° C.

The kinetic studies are calculated. The calculation steps are shown as follows:

The conversion of ethyl acetate was calculated by equation (1):
C,-C

t

Xyoes = x 100%

0

where €0 and Ct represent ethyl acetate concentration in the inlet and outlet gas,
respectively.

The reaction rate was calculated as equation (2):
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% XVOCs - VVOCs
T n=——
VOCs 0
Mcatw A’Ni

Vvocs represents the feed gas flow rate (mol/s), M ca; represents the catalyst

where
weight (g), w%i is the content of Ni in catalyst (%).

The activation energy Eq can be determined from the Arrhenius equation (3):
-E,
Inr = A + InA

where R is the universal constant with a value of 8.314 x 103 kJ/mol-K, A is a
constant, and T is the temperature (in Kelvin).

In order to explore the intrinsic activity of the catalyst and the kinetic changes of
the catalytic process, the ordinate of {7 and the abscissa of 1000/7 were respectively
considered, and the relevant reaction activation energy (E a) was calculated by
Arrhenius equation. The data points were selected for kinetic analysis under the
condition that the conversion rate of ethyl acetate was maintained within 5%. As

depicted in Figure S16, As the activation energy over the SANis-O-2DRGO is 21.8

kJ/mol, which substantially lower than other reported catalysts.
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Figure S3. The infrared spectra of SANis-O-2DRGO, graphene oxide, and unreduced

Ni-GO mixtures
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Figure S7. Nitrogen-sorption isotherms of SANix-O-2DRGO
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Figure S9. Conversion of toluene and CO, yield over SANis-O-2DRGO
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Figure S16. Arrhenius plots over SANis-O-2DRGO in the ethyl acetate

oxidation reaction

Table S1. The EXAFS fitting results of SANi;-O-2DRGO

Catalysts Path N R (A) 62(A?) AE;(eV) R-factor

SANi;s-O-
2DRGO

Ni-O 4.0 1.6 0.011 -8.29 0.003
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Table S2. The Fukui values (f -) of ethyl acetate

Atom C1 C2 03 04 C5 Co6 H7
S+ 0.25 -0.05 0.23 0.09 -0.06 -0.02 0.10
0.10 -0.01 0.40 0.11 -0.08 -0.02 0.10
HS8 H9 H10 H11 H12 H13 Hi14
0.13 0.09 0.06 0.06 0.04 0.04 0.06
1) 0.09 0.07 0.05 0.05 0.04 0.04 0.06
Table S3. The BET results of SANix-O-2DRGO
Catalysts & Daversge Sper
(em?g!) (nm) (m?g!)
SANi(5-O-2DRGO 0.1423 17.39 32.587
SANi;-O-2DRGO 0.2223 7.01 125.75
SANi,-O-2DRGO 0.1870 7.05 107.91
SANi;-O-2DRGO 0.1901 7.92 92.825
SANiy-O-2DRGO 0.2432 6.72 139.36
SANis-O-2DRGO 0.1727 6.42 100.03
Table S4 The ICP-MS results of SANix-O-2DRGO
Catalysts SANips-O- SANi;-O- SANi,-O- SANi3-O- SANiy-O-  SANis-O-
2DRGO 2DRGO  2DRGO 2DRGO 2DRGO  2DRGO
ICP-MS 0.73% 1.86% 3.43% 5.44% 8.13% 10.16%

Table SS. Information of all detected intermediates during the reaction
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Molecular

Label Compound mane  Molecular structure ~ Ion debris (m/z)
formula

15, 26, 27, 43, 86,

1 C4Hs0, Ethyl acetate O, <
87
) ] ) 14, 15, 16, 43, 45,
2 C,H,0, Acetic acid O, ;
60
3 C,HsO Ethanol %‘a 12, 13, 31, 45, 46
O
4 C,H,0O Acetaldehyde H 14,29, 42,43, 44
o
14, 16, 24, 25, 41,
5 C,H,0 Ketene @'
. 42
‘ CH Ethvl Q ) 14, 15, 16, 28, 29,
thylene
o P@ 30
7 CH,0, Formic acid h 17,29, 45, 46
8 CO, Carbon oxide 09 12, 16, 28, 44
9 H,O Water (j.C 18
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