Insights from Experiment and Machine Learning for Enhanced TiO₂ Coated Glazing for Photocatalytic NO_x Remediation

Zhi-Peng Lin^a, Yuan-Kai Li^a, Saif A. Haque^a, Alex M. Ganose^{a,b,*}, and Andreas Kafizas^{a,c,*}

^aDepartment of Chemistry, Molecular Science Research Hub, Imperial College London, White City, London, W12 0BZ, U.K. ^bThomas Young Centre, The London Centre for the Theory and Simulation of Materials, Royal School of Mines, Imperial College London, South Kensington, London, U.K. ^cLondon Centre for Nanotechnology, Imperial College London, SW7 2AZ, U.K.

*Corresponding author: Alex Ganose: a.ganose@imperial.ac.uk; Andreas Kafizas: a.kafizas@imperial.ac.uk

A Figures

A.1 Introduction

Figure S1: Mechanism illustrating the various stages in the photocatalytic degradation of NO_x in the air to HNO_3 on a TiO_2 coated window.

A.2 Experimental

Figure S2: (a) The APCVD apparatus used to produce the TiO_2 -coated glass herein (which utilises a Model 3216 Temperature controller from EUROTHEMTM; K-type therm^oCouples from RS COMPONENTSTM and carbon rod from SENSEMASTERTM); (b) Photocatalytic NO_x test set-up built in accordance with ISO 22197-1:2016 (with an illustration of the gas-flow through the sample holder and photographs of the experimental set-up, which includes a chemi-luminescence analyser Model 40 from SERINUS[®], EcotechTM).

A.3 Results and Discussion

Figure S3: Photographs of all 58 unique TiO_2 coatings on glass synthesized using APCVD with differing synthesis parameters.

A.3.1 Effect of CVD Deposition Temperature

Figure S4: Using TTIP as the precursor, here we show how average crystal size and preferred orientation of particular crystal facets are affected at different deposition temperatures. The errors on the average crystal size represent the range of average crystal sizes seen for samples produced at that temperature. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S5: Using TiEt as the precursor, here we show how average crystal size and preferred orientation of particular crystal facets are affected at different deposition temperatures. The errors on the average crystal size represent the range of average crystal sizes seen for samples produced at that temperature. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S6: Using TiBu as the precursor, here we show how average crystal size and preferred orientation of particular crystal facets are affected at different deposition temperatures. The errors on the average crystal size represent the range of average crystal sizes seen for samples produced at that temperature. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S7: Variations in Bandgap and Visible Light Transmittance with Deposition Temperature: Green lines for the precursor TTIP, red for TiEt, and blue for TiBu show the changes. Solid lines depict bandgap values and dashed lines represent VLT measurements.

Figure S8: Variations in Rq roughness and sample surface area with deposition temperature: Green lines for the precursor TTIP, red for TiEt, and blue for TiBu show the changes. Solid lines depict Rq roughness values and dashed lines represent sample surface area.

Figure S9: Variations in crystal size and facet orientations at different synthesis time. Using TTIP as the precursor with a bubbler temperature of 160 °C and a deposition temperature of 450 °C. the scatter line graph represents the change in crystal size with varying deposition temperatures. the bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S10: Variations in crystal size and facet orientations at different synthesis time. Using TTIP as the precursor with a bubbler temperature of 160°C and a deposition temperature of 500 °C. the scatter line graph represents the change in crystal size with varying deposition temperatures. the bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S11: Variations in crystal size and facet orientations at different synthesis time. Using TiEt as the precursor with a bubbler temperature of 160°C and a deposition temperature of 500 °C. the scatter line graph represents the change in crystal size with varying deposition temperatures. the bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S12: Variations in crystal size and facet orientations at different synthesis time. Using TiBu as the precursor with a bubbler temperature of 160°C and a deposition temperature of 450 °C. the scatter line graph represents the change in crystal size with varying deposition temperatures. the bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S13: Variations in crystal size and facet orientations at different synthesis time. Using TiBu as the precursor with a bubbler temperature of 160°C and a deposition temperature of 500 °C. the scatter line graph represents the change in crystal size with varying deposition temperatures. the bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S14: Using TTIP as the precursor; variations in TiO_2 bandgap and visible light transmittance with synthesis time: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict TiO_2 bandgap and dashed lines represent visible light transmittance.

Figure S15: Using TiEt as the precursor; variations in TiO_2 bandgap and visible light transmittance with synthesis time: Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict TiO_2 bandgap and dashed lines represent visible light transmittance.

Figure S16: Using TiBu as the precursor; variations in TiO₂ bandgap and visible light transmittance with synthesis time: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict TiO₂ bandgap and dashed lines represent visible light transmittance.

Figure S17: SEM images of selected coatings produced using TTIP and TiEt at a constant deposition temperature of 500 °C and bubbler temperature of 160 °C.

Figure S18: Using TTIP as the precursor; variations in Rq roughness and sample surface area (per 25 μ m² geometric area) with synthesis time: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict Rq roughness and dashed lines represent sample surface area.

Figure S19: Using TiEt as the precursor; variations in Rq roughness and sample surface area (per 25 μm^2 geometric area) with synthesis time: Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict Rq roughness and dashed lines represent sample surface area.

Figure S20: Using TiBu as the precursor; variations in Rq roughness and sample surface area (per 25 μm^2 geometric area) with synthesis time: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict Rq roughness and dashed lines represent sample surface area.

Figure S21: Variations in crystal size and facet orientations at different bubbler temperature using TTIP as the precursor with a bubbler temperature of 160°C and a deposition temperature of 450°C. The scatter line graph represents the change in crystal size with varying deposition temperatures. The bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

A.3.3 Effect of Bubbler Temperature

Figure S22: Variations in crystal size and facet orientations at different bubbler temperature using TTIP as the precursor with a bubbler temperature of 160 °C and a deposition temperature of 500 °C. The scatter line graph represents the change in crystal size with varying deposition temperatures. The bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S23: Variations in crystal size and facet orientations at different bubbler temperature using TiEt as the precursor with a bubbler temperature of 160 °C and a deposition temperature of 500 °C. The scatter line graph represents the change in crystal size with varying deposition temperatures. The bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S24: Variations in crystal size and facet orientations at different bubbler temperature using TiBu as the precursor with a bubbler temperature of 160 °C and a deposition temperature of 450 °C. The scatter line graph represents the change in crystal size with varying deposition temperatures. The bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S25: Variations in crystal size and facet orientations at different bubbler temperature using TiBu as the precursor with a bubbler temperature of 160 °C and a deposition temperature of 500 °C. The scatter line graph represents the change in crystal size with varying deposition temperatures. The bar graph showcases the orientation distribution of different crystal facets. The colors corresponding to each facet are: 101 facet: Pink; 200 facet: Yellow; 211 facet: SkyBlue; 220 facet: Grey.

Figure S26: Using TTIP as the precursor; variations in TiO_2 bandgap and visible light transmittance with bubbler temperature: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict TiO_2 bandgap and dashed lines represent visible light transmittance.

Figure S27: Using TiEt as the precursor; variations in TiO_2 bandgap and visible light transmittance with bubbler temperature: Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict TiO_2 bandgap and dashed lines represent visible light transmittance.

Figure S28: Using TiBu as the precursor; variations in TiO₂ bandgap and visible light transmittance with bubbler temperature: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict TiO₂ bandgap and dashed lines represent visible light transmittance.

Figure S29: SEM images of selected coatings produced using TiBu at a constant reaction time of 3 mins and either a deposition temperature of 450 or 500 °C and bubbler temperature of 140 and 220 °C.

Figure S30: Using TTIP as the precursor; variations in Rq roughness and sample surface area with bubbler temperature: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict Rq roughness and dashed lines represent sample surface area.

Figure S31: Using TiEt as the precursor; variations in Rq roughness and sample surface area with bubbler temperature: Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict Rq roughness and dashed lines represent sample surface area.

Figure S32: Using TiBu as the precursor; variations in Rq roughness and sample surface area with bubbler temperature: Purple lines with circle symbol for the deposition temperature at 450 °C, Black lines with triangle symbol for the deposition temperature at 500 °C. Solid lines depict Rq roughness and dashed lines represent sample surface area.

A.4 ML-Assisted Insights on Photocatalytic NO_x Activity Prediction

Figure S33: Pearson correlation coefficients between synthetic parameters (precursor used, deposition temperature, bubbler temperature and synthesis time), physicochemical properties and photocatalytic NO_x activity for experiment data

Figure S34: SHAP value for predicting (a) photocatalytic NO conversion; (b) NO₂ selectivity when applying the "Modified Property-Prior Prediction" Strategy.

The SHAP plot on the left relates to NO_x conversion. It is visible that the features 'Surface Roughness', 'VLT', and 'Charlife' are positioned at the top, indicating higher SHAP values and consequently a more substantial influence on the model's predictive capability. The photocatalytic activity is positively correlated with these properties, as illustrated by the color gradient from blue to red. Similar to NO prediction, this plot implies that increasing these factors could improve the effectiveness of NO_x conversion. The VLT, however, contributes the most negative influence on product activity of NO_x conversion.

In terms of NO_2 , it is notable that features such as '101 Phase', 'VLT', and 'Charlife' contribute diverse impacts on the model's output for NO_2 selectivity. Surprisely, The '101 Phase' feature demonstrates mostly positive SHAP values, positioning it at the highest point on the plot. This suggests a beneficial correlation between the growth of the (101) plane and the NO_2 selectivity, implied the facilitating of (101) facet growth may suppres the NO gas convert to NO_2 . On the other hand, 'VLT' exhibits a combination of positive and negative SHAP values, suggesting a complex connection between transparency and NO_2 selectivity in our case, and suggesting that the effect of 'VLT' on NO_2 selectivity could vary depending on the interplay with other features.

Machine Learning predictions of the photocatalytic NO_x activity for a range of synthetic parameters. (a) A digital image of a coating produced with the following synthetic parameters - Precursor Selection: TiEt; Deposition Temperature: 430 °C; Bubbler Temperature: 210 °C; Synthesis Time: 1 minute. 4D scatter plots of ML simulated results of the photocatalytic NO removal activity against synthetic parameters (deposition temperature (°C), bubbler temperature (°C) and synthesis time (mins)) for (b) TTIP (c), TiBu and (d) TiEt as precursors.

B Tables

Sample No.	Precursor Selection	Synthesis ture (°C)	Tempera-	Precursor Temperatur	Preheating re (°C)	Synthesis Time (min)	NO Conver- sion (%)	NO error	NO _x Con- version(%)	NO _x Error	NO ₂ Selec- tivity (%)	NO ₂ Error
1	TTIP	350		160		3	0.606	0.172	0.232	0.162	61.098	19.934
2	TTIP	400		160		3	1.427	0.335	0.798	0.1	44.226	21.447
3	TTIP	450		160		3	0.302	0.165	0.038	0.087	87.174	57.297
4	TTIP	500		160		3	1.941	0.228	0.417	0.117	78.405	12.687
5	TTIP	550		160		3	11.43	1.079	2.342	0.375	79.345	10.473
6	TTIP	600		160		3	14.977	1.687	3.278	0.593	77.87	11.976
7	TiEt	350		160		3	1.568	0.342	1.056	0.176	31.037	15.614
8	TiEt	400		160		3	0.773	0.458	0.319	0.11	57.894	64.21
9	TiEt	450		160		3	0.865	0.234	0.318	0.147	62.733	22.295
10	TiEt	500		160		3	0.63	0.271	0.206	0.083	66.932	41.99
11	TiEt	550		160		3	3.65	0.65	1.334	0.258	62.689	16.049
12	TiEt	600		160		3	22.675	1.961	6.627	0.957	70.171	8.908
13	TiBu	350		160		3	0.489	0.164	0.37	0.119	23.255	22.345
14	TiBu	400		160		3	0.256	0.154	0.229	0.074	9.184	32.733
15	TiBu	450		160		3	0.655	0.217	0.017	0.414	54.303	28.547
16	TiBu	500		160		3	5.416	0.754	1.133	0.219	78.91	15.532
17	TiBu	550		160		3	10.854	1.025	2.653	0.368	75.373	10.23
18	TiBu	600		160		3	12.685	1.141	3.203	0.434	74.556	9.398
19	TTIP	450		160		5	0.359	0.247	0.258	0.183	27.658	26.371
20	TTIP	500		160		5	7.72	0.844	2.069	0.347	73.15	11.127
21	TTIP	450		160		2	0.205	0.115	0.171	0.099	16.138	13.309
22	TTIP	500		160		2	0.145	0.081	0.061	0.035	58.009	49.97
23	TTIP	450		160		4	0.103	0.086	0.002	0.032	98.062	110.451
24	TTIP	500		160		4	0.362	0.154	0.405	0.105	12.307	17.047
25	TTIP	450		160		1	0.025	0.123	0.013	0.057	48.366	365.092
26	TTIP	500		160		1	0.074	0.042	0.051	0.028	31.272	60.697
27	TTIP	450		180		3	1.884	0.398	0.781	0.182	57.982	17.751

Table S1: Sample numbers, experimental synthesis conditions, and photocatalytic NO_x performance of all 58 TiO₂ coatings produced herein uing atmospheric pressure chemical vapour deposition (APCVD) on glass.

28	TTIP	500	180	3	0.308	0.123	0.146	0.081	52.317	34.635
29	TTIP	450	140	3	0.571	0.18	0.359	0.115	36.589	18.846
30	TTIP	500	140	3	0.154	0.126	0.18	0.119	16.99	24.789
31	TTIP	450	120	3	0.595	0.181	0.3	0.1	49.134	21.662
32	TTIP	500	120	3	0.015	0.127	0.009	0.06	161.474	1460.097
33	TTIP	450	100	3	2.355	0.482	0.456	0.122	80.485	22.952
34	TTIP	500	100	3	2.237	0.4	0.548	0.12	75.342	19.036
35	TiEt	500	160	15	0.494	0.191	0.151	0.091	69.208	33.999
36	TiEt	500	160	12	0.331	0.18	0.145	0.086	56.045	42.477
37	TiEt	500	160	9	0.045	0.054	0.049	0.028	9.742	70.311
38	TiEt	500	160	6	0.146	0.096	0.124	0.06	14.69	55.586
39	TiEt	500	200	3	0.572	0.194	0.095	0.045	83.225	40.113
40	TiEt	500	180	3	0.233	0.181	0.064	0.06	72.777	77.031
41	TiEt	500	140	3	0.961	0.308	0.157	0.111	83.512	34.072
42	TiEt	500	120	3	1.307	0.37	0.23	0.084	82.211	32.12
43	TiBu	500	160	27	0.627	0.23	0.2	0.08	67.916	36.497
44	TiBu	450	160	27	0.553	0.218	0.114	0.096	79.126	43.741
45	TiBu	500	160	21	0.638	0.223	0.269	0.114	57.383	28.49
46	TiBu	450	160	21	0.75	0.223	0.21	0.116	71.785	28.866
47	TiBu	500	160	15	0.893	0.259	0.26	0.07	70.69	30.967
48	TiBu	450	160	15	0.719	0.227	0.356	0.085	50.145	27.049
49	TiBu	500	160	9	0.628	0.152	0.38	0.07	39.174	19.107
50	TiBu	450	160	9	0.861	0.208	0.129	0.085	84.988	27.159
51	TiBu	500	220	3	0.612	0.24	0.157	0.078	74.121	40.414
52	TiBu	450	220	3	7.479	0.837	2.977	0.407	59.886	9.396
53	TiBu	500	200	3	0.324	0.149	0.201	0.057	37.471	34.453
54	TiBu	450	200	3	1.047	0.329	0.283	0.113	72.845	30.969
55	TiBu	500	180	3	1.379	0.333	0.232	0.104	83.12	26.738
56	TiBu	450	180	3	0.695	0.263	0.201	0.119	70.926	34.851
57	TiBu	500	140	3	7.954	0.711	1.781	0.255	77.505	9.826
58	TiBu	450	140	3	0.476	0.232	0.115	0.107	75.654	45.712

Activ TM /	/	/	/	0.606	0.172	0.232	0.162	61.098	19.934
Glass									

Variables	Sample No.	Direct Bandgap (eV)	Indirect Bandgap (eV)	Visible Light (380-750) Transmittance	Average Thickness (nm)
Temperature	001_TTIP_350_160_3	3.83	3.34	79.03	165.63
-	002_TTIP_400_160_3	3.82	3.42	68.60	416.84
	003_TTIP_450_160_3	3.64	3.05	56.01	/
	004_TTIP_500_160_3	3.44	3.11	61.43	/
	005_TTIP_550_160_3	3.35	2.97	30.17	/
	006_TTIP_600_160_3	3.23	2.88	18.51	/
	007_TiEt_350_160_3	3.74	3.32	82.32	293.45
	008_TiEt_400_160_3	3.80	3.29	80.24	339.66
	009_TiEt_450_160_3	3.83	3.36	81.48	162.13
	010_TiEt_500_160_3	3.62	3.27	71.09	711.78
	011_TiEt_550_160_3	3.69	2.97	72.16	756.75
	012_TiEt_600_160_3	3.42	3.10	47.46	1744.02
	013_TiBu_350_160_3	/	/	92.57	/
	014_TiBu_400_160_3	3.84	3.29	81.59	157.40
	015_TiBu_450_160_3	3.80	3.28	84.75	212.47
	016_TiBu_500_160_3	3.54	3.19	73.31	943.57
	017_TiBu_550_160_3	3.46	3.08	62.45	1042.06
	018_TiBu_600_160_3	3.37	2.95	15.08	/
Preheating Temperature	033_TTIP_450_100_3	3.6818	3.03	67.97	857.73
	031_TTIP_450_120_3	3.7292	3.04	63.43	/
	029_TTIP_450_140_3	3.7604	3.07	67.57	776.97
	003_TTIP_450_160_3	3.6359	3.05	56.01	/
	027_TTIP_450_180_3	3.5959	2.98	74.50	/
	034_TTIP_500_100_3	3.5455	3.17	69.84	/
	032_TTIP_500_120_3	/	2.98	22.10	/
	030_TTIP_500_140_3	3.5040	3.15	72.55	/
	004_TTIP_500_160_3	3.4373	3.11	61.43	1

 Table S2: Optical Properties for coatings with different synthetic parameters.

	028_TTIP_500_180_3	3.4447	3.14	71.70	/
	042_TiEt_500_120_3	3.8433	3.22	84.06	191.59
	041_TiEt_500_140_3	3.7367	3.27	77.15	408.20
	010_TiEt_500_160_3	3.6196	3.27	71.09	711.78
	040_TiEt_500_180_3	3.6789	3.32	83.41	570.92
	039_TiEt_500_200_3	3.6640	3.14	74.81	794.75
	058_TiBu_450_140_3	3.6418	3.23	79.33	561.75
	015_TiBu_450_160_3	3.8004	3.28	84.75	212.47
	056_TiBu_450_180_3	3.7752	3.31	84.53	/
	054_TiBu_450_200_3	3.3884	3.12	77.87	/
	052_TiBu_450_220_3	3.4625	3.21	81.96	268.47
	057_TiBu_500_140_3	3.5810	3.23	69.99	1317.50
	016_TiBu_500_160_3	3.5396	3.19	73.31	943.57
	055_TiBu_500_180_3	3.6344	2.92	52.33	/
	053_TiBu_500_200_3	3.7218	3.41	81.50	513.35
	051_TiBu_500_220_3	3.4432	3.12	59.74	/
Synthesis Time	025_TTIP_450_160_1	3.8241	3.16	74.72	488.13
	021_TTIP_450_160_2	3.5129	3.08	65.43	1431.94
	003_TTIP_450_160_3	3.6359	3.05	56.01	/
	023_TTIP_450_160_4	3.3988	3.07	57.54	1973.66
	019_TTIP_450_160_5	3.4106	3.14	60.20	/
	026_TTIP_500_160_1	3.8611	3.45	81.51	411.47
	022_TTIP_500_160_2	3.5588	3.26	75.89	1492.11
	004_TTIP_500_160_3	3.4373	3.11	61.43	/
	024_TTIP_500_160_4	3.3810	3.14	54.76	/
	020_TTIP_500_160_5	3.3528	3.07	19.30	/
	010_TiEt_500_160_3	3.6196	3.27	71.09	711.78
	038_TiEt_500_160_6	3.6803	3.11	64.73	816.42
	037_TiEt_500_160_9	3.7678	3.12	71.91	718.10
	036_TiEt_500_160_12	3.5825	3.25	73.92	992.82
	035_TiEt_500_160_15	3.5084	3.21	72.54	1079.47
	015 TiBu 450 160 3	3 8004	3 28	84 75	212 47

050_TiBu_450_160_9	3.8626	3.36	84.79	199.59
048_TiBu_450_160_15	3.4566	3.02	41.98	/
046_TiBu_450_160_21	3.8330	3.29	75.66	342.74
044_TiBu_450_160_27	3.6729	3.27	72.88	633.40
016_TiBu_500_160_3	3.5396	3.19	73.31	943.57
049_TiBu_500_160_9	3.6285	3.29	76.00	798.74
047_TiBu_500_160_15	3.3943	3.10	72.33	703.47
045_TiBu_500_160_21	3.5929	3.28	65.09	941.65
043_TiBu_500_160_27	3.6833	3.28	63.44	453.29

Sample No.	Precursor Selection	Synthesis Tem- perature (°C)	Precursor Preheating Temperature(°C)	Synthesis Time (min)	Population @ $10 \ \mu s(m \Delta O.D.)$	$t_{50\%}$ from $10\mu s$ (ms)
1	TTIP	350	160	3	0.0032	0.142
2	TTIP	400	160	3	0.0304	0.102
3	TTIP	450	160	3	0.2364	0.309
4	TTIP	500	160	3	0.0779	0.0424
5	TTIP	550	160	3	3.2088	5.86
6	TTIP	600	160	3	2.9154	14.1
7	TiEt	350	160	3	0.1024	0.225
8	TiEt	400	160	3	0.0652	1.64
9	TiEt	450	160	3	0.0128	0.148
10	TiEt	500	160	3	0.1524	0.234
11	TiEt	550	160	3	0.1018	0.672
12	TiEt	600	160	3	3.423	0.0204
13	TiBu	350	160	3	0.01	0.0236
14	TiBu	400	160	3	0.0159	0.14
15	TiBu	450	160	3	-0.0011	/
16	TiBu	500	160	3	0.1871	0.256
17	TiBu	550	160	3	0.113	2.02
18	TiBu	600	160	3	0.0443	0.626
19	TTIP	450	160	5	0.507	0.115
20	TTIP	500	160	5	0.7328	0.262
21	TTIP	450	160	2	0.1794	0.16
22	TTIP	500	160	2	0.1031	0.044
23	TTIP	450	160	4	0.2203	0.112
24	TTIP	500	160	4	0.0359	0.157
25	TTIP	450	160	1	0.076	0.11
26	TTIP	500	160	1	0.0121	0.0688
27	TTIP	450	180	3	0.2166	0.134
28	TTIP	500	180	3	0.0476	0.0308

 Table S3: Photogenerated charge carrier kinetics for different synthetic parameters.

29	TTIP	450	140	3	0.2042	0.201
30	TTIP	500	140	3	0.1936	0.134
31	TTIP	450	120	3	0.1513	0.126
32	TTIP	500	120	3	0.0929	0.12
33	TTIP	450	100	3	0.0814	0.0672
34	TTIP	500	100	3	0.1551	0.112
35	TiEt	500	160	15	0.4213	0.438
36	TiEt	500	160	12	0.6032	0.419
37	TiEt	500	160	9	0.5099	0.3
38	TiEt	500	160	6	0.384	0.224
39	TiEt	500	200	3	0.186	0.153
40	TiEt	500	180	3	0.1666	0.24
41	TiEt	500	140	3	0.0471	0.137
42	TiEt	500	120	3	0.0096	23.9
43	TiBu	500	160	27	0.4595	0.654
44	TiBu	450	160	27	0.2153	0.328
45	TiBu	500	160	21	0.423	0.836
46	TiBu	450	160	21	0.2545	0.448
47	TiBu	500	160	15	0.5633	0.836
48	TiBu	450	160	15	0.1633	0.328
49	TiBu	500	160	9	0.3307	0.32
50	TiBu	450	160	9	0.1196	0.245
51	TiBu	500	220	3	0.2671	0.234
52	TiBu	450	220	3	0.1046	71.1
53	TiBu	500	200	3	0.2784	0.201
54	TiBu	450	200	3	0.1016	0.419
55	TiBu	500	180	3	0.1488	0.096
56	TiBu	450	180	3	0.0863	0.205
57	TiBu	500	140	3	0.1096	0.6
58	TiBu	450	140	3	0.0655	0.1
Activ TM Glass	/	/	/	/	0.0085	0.205

Sample NO.	ξ DeNO [*] _x	ξ NO/ppm	$\xi NO_x/ppm$	ξ NO ₂ /ppm	NO ₂ selectivity/%
1	-0.065	0.078	0.031	0.048	61.098
2	-0.060	0.184	0.105	0.082	44.226
3	-0.063	0.039	0.005	0.034	87.174
4	-0.342	0.253	0.055	0.198	78.405
5	-2.051	1.486	0.307	1.179	79.345
6	-2.598	1.945	0.430	1.514	77.870
7	0.014	0.202	0.139	0.063	31.037
8	-0.073	0.099	0.042	0.057	57.894
9	-0.099	0.112	0.042	0.070	62.733
10	-0.082	0.081	0.027	0.054	66.932
11	-0.416	0.472	0.176	0.296	62.689
12	-3.240	2.932	0.875	2.058	70.171
13	0.019	0.064	0.049	0.015	23.255
14	0.024	0.033	0.030	0.003	9.184
15	-0.053	0.085	0.002	0.046	54.303
16	-0.962	0.704	0.148	0.555	78.910
17	-1.777	1.409	0.347	1.062	75.373
18	-2.039	1.648	0.419	1.229	74.556
19	0.008	0.046	0.034	0.013	27.658
20	-1.194	1.000	0.268	0.731	73.150
21	0.014	0.026	0.022	0.004	16.138
22	-0.014	0.019	0.008	0.011	58.009
23	-0.026	0.013	0.000	0.013	98.062
24	0.030	0.047	0.053	0.006	12.307
25	-0.001	0.003	0.002	0.002	48.366
26	0.001	0.010	0.007	0.003	31.272
27	-0.179	0.242	0.102	0.140	57.982
28	-0.023	0.040	0.019	0.021	52.317
29	-0.007	0.074	0.047	0.027	36.589
30	0.010	0.020	0.023	0.003	16.990
31	-0.036	0.077	0.039	0.038	49.134
32	-1.329	0.731	0.044	0.687	93.948
33	-0.429	0.303	0.059	0.244	80.485
34	-0.363	0.288	0.071	0.217	75.342
35	-0.069	0.064	0.020	0.044	69.208
36	-0.029	0.043	0.019	0.024	56.045
37	0.004	0.006	0.006	0.001	9.742
38	0.011	0.019	0.016	0.003	14.690
39	-0.111	0.074	0.012	0.062	83.225
40	-0.036	0.030	0.008	0.022	72.777
41	-0.186	0.124	0.020	0.103	83.512
42	-0.247	0.168	0.030	0.138	82.211
43	-0.085	0.082	0.026	0.056	67.916

Table S4: Calculated total ξNO and ξNO_x and ξNO_2 and quantities of NO_2 selectivity and $De-NO_x$ index ($\xi DeNO_x$)

44	-0.099	0.072	0.015	0.057	79.126
45	-0.060	0.083	0.035	0.048	57.383
46	-0.113	0.098	0.028	0.070	71.785
47	-0.130	0.116	0.034	0.082	70.690
48	-0.047	0.093	0.047	0.047	50.145
49	-0.014	0.082	0.050	0.032	39.174
50	-0.174	0.112	0.017	0.095	84.988
51	-0.097	0.079	0.021	0.059	74.121
52	-0.769	0.966	0.387	0.578	59.886
53	-0.005	0.042	0.026	0.016	37.471
54	-0.160	0.135	0.037	0.099	72.845
55	-0.267	0.179	0.030	0.149	83.120
56	-0.101	0.090	0.026	0.064	70.926
57	-1.367	1.032	0.232	0.800	77.505
58	-0.078	0.062	0.015	0.047	75.654
*ξDeNO _x =	$= \xi NO - 3 \times$	ξNO_2			

 ξ DeNO_x is defined by assigning toxicity values to NO and NO₂ separately, and expressing changes in total toxicity rather than changes in the concentration of nitrogen oxides alone.[1] The calculation is determined by following **Equation B**:

$$\xi_{[x]} = \frac{(c_d - c_i) \cdot V \cdot p}{A \cdot R \cdot T \cdot \Phi}$$

In which c_d is dark concentration of gas [X] in ppm, c_i is light concentration of gas [X] in ppm. V,p,A,R and T represents the volumeric flowrate, pressure, irradiated area, the gas constant, and absolute temperature, respectively. Φ , indicates the photon flux illuminate on the sample surface.

A negative ξ DeNO_x leads a increasing toxicity in photocatalytic oxidation of NO, and *vice versa*.

Table S5: data set Used for ML Modelling.

TTIP	TiBu	TiEt	Synthesis Tem- perature(°C))	Bubbler Tem- perature(°C)	Synthesis Time(mins)	Crystal Size(nm)	101 Phase	200 Phase	211 Phase	220 Phase	Bandgap(eV)	VLT(%)	Rq(nm)	$SSA(\mu m^2)$	Charpopm Δ O.D.	Charlife(ms)	NO(%)	Nox(%)	NO2(%)
1	0	0	350	160	3	31.5176	1.0954	1.2293	0.6754	0	3.338	79.034	10.13	25.39	0.0032	0.142	0.6064	0.2324	61.1
1	0	0	400	160	3	28.4896	0.9099	1.2376	0.8524	0	3.4165	68.5988	24.53	26.78	0.0304	0.102	1.4267	0.7979	44.23
1	0	0	450	160	3	28.4128	0.5363	1.02	1.2892	1.1544	3.0535	56.0072	24.59	26.77	0.2364	0.309	0.3019	0.038	87.17
1	0	0	500	160	3	26.4843	0	1	0	0	3.1127	61.428	29.12	26.88	0.0779	0.0424	1.941	0.4175	78.4
1	0	0	550	160	3	27.5976	0.5517	0.4619	0.7088	2.2776	2.9749	30.1676	84.52	31.72	3.2088	5.86	11.4302	2.3422	79.34
1	0	0	600	160	3	31.3955	0.5449	0.32	0.6311	2.504	2.8771	18.5055	98.39	32.42	2.9154	14.1	14.9768	3.2779	77.87
0	0	1	350	160	3	23.832	0.62	1.877	0.6342	0.8688	3.3158	82.3167	12.49	25.3	0.1024	0.225	1.5676	1.0558	31.04
0	0	1	400	160	3	21.4866	0.9054	0.7048	1.3575	1.0323	3.2921	80.2398	7.336	25.29	0.0652	1.64	0.7726	0.3188	57.89
0	0	1	450	160	3	17.9081	1.0855	0.947	0.90/0	1 7606	3.338/	81.4821	8.091	25.23	0.0128	0.148	0.8647	0.3177	66.02
0	0	1	550	160	3	24.1709	0.0932	2 0701	0.0278	0.5223	2 9749	72 1592	20.26	25.55	0.1018	0.234	3 6499	1 33/3	62.69
0	0	1	600	160	3	30 4073	0.0507	1 6164	0.7946	1 4268	3.0965	47 459	35.58	28.9	3 423	0.072	22 6746	6.6269	70.17
0	1	0	400	160	3	18 3004	1 0954	0.8864	1.0182	0	3 2921	81 5864	5 588	26	0.0159	0.14	0 2555	0.2291	9.18
ő	1	õ	500	160	3	22.9459	0.1067	0.3078	0.8731	2.7124	3.1898	73.3079	12.37	26.04	0.1871	0.256	5.4158	1.1325	78.91
0	1	0	550	160	3	26.9996	0.5231	1.2943	0.7705	1.4122	3.0772	62.4537	26.64	28.25	0.113	2.02	10.8541	2.6529	75.37
0	1	0	600	160	3	31.9029	0.4412	0.3774	0.9473	2.2342	2.9527	15.0838	64.54	31.16	0.0443	0.626	12.6852	3.2027	74.56
1	0	0	450	160	5	27.5518	0.1878	0.6691	0.9269	2.2162	3.1409	60.1976	26.24	27.03	0.507	0.115	0.3591	0.2577	27.66
1	0	0	500	160	5	28.8829	0.0185	0.1772	0.1204	3.684	3.0742	19.3009	143.6	35.62	0.7328	0.262	7.7195	2.0686	73.15
1	0	0	450	160	2	26.6123	0.1045	0.4902	0.9519	2.4534	3.0786	65.4312	22.42	26.71	0.1794	0.16	0.2046	0.1707	16.14
1	0	0	500	160	2	25.9187	0.2595	2.6342	0.1064	0	3.2565	75.8937	16.12	27.36	0.1031	0.044	0.1452	0.0607	58.01
1	0	0	450	160	4	25.5019	0.1876	0.192	1.227	2.3933	3.0668	57.5399	29.5	27.12	0.2203	0.112	0.103	0.0021	98.06
1	0	0	500	160	4	25.754	0.0194	0.7191	0.3398	2.9217	3.1394	54.759	27.73	26.73	0.0359	0.157	0.3625	0.405	12.31
1	0	0	450	160	1	26.8252	0.8883	1.6277	0.484	0	3.158/	74.7212	14.26	26.15	0.076	0.11	0.025	0.0129	48.37
1	0	0	500	100	1	19.3002	0.2005	1.2284	0.5685	2 0 4 4 1	3.4491	81.5103	11.92	25.81	0.0121	0.0088	0.0741	0.0506	51.27
1	0	0	430 500	180	3	20.7711	0.2003	2 7142	1.1242	2.0441	2.9606	74.3017	10.48	26.27	0.2100	0.134	0.2081	0.7811	57.90
1	0	0	450	140	3	22 5945	0.667	2.7143	0.3	0.3575	3.0698	67 5738	20.34	26.37	0.2042	0.0508	0.5711	0.3592	36.59
1	0	0	500	140	3	25 3076	0.0326	2.2003	0.059	0.5575	3 1498	72 5488	21.08	26.13	0.1936	0.134	0.1545	0.1797	16.99
1	0	Ő	450	120	3	28.4577	0.371	1.5952	1.1149	0.9189	3.0386	63.4309	16.72	26.09	0.1513	0.126	0.5948	0.3002	49.13
1	0	0	500	120	3	31.2943	0.3657	2.6702	0.764	0.2001	2.9833	22.1049	19.43	25.93	0.0929	0.12	0.0149	0.0087	161.47
1	0	0	450	100	3	29.254	0.4497	1.565	1.1327	0.8527	3.0342	67.9671	18.17	25.96	0.0814	0.0672	2.3547	0.456	80.49
1	0	0	500	100	3	27.9019	0.076	2.5862	0.5688	0.769	3.1676	69.8413	23.5	28.37	0.1551	0.112	2.2372	0.5478	75.34
0	0	1	500	160	15	20.1386	0.0289	0.034	0.7484	3.1887	3.2091	72.5424	15.36	26.31	0.4213	0.438	0.4937	0.1507	69.21
0	0	1	500	160	12	22.2277	0.0591	0.0535	0.5724	3.315	3.2491	73.9234	13.01	25.89	0.6032	0.419	0.3313	0.1448	56.04
0	0	1	500	160	9	24.0789	0.5734	1.3042	1.2132	0.9092	3.1187	71.9104	16.71	26.07	0.5099	0.3	0.0452	0.0488	9.74
0	0	1	500	160	6	23.1755	0.2009	0.1468	1.3217	2.3306	3.1098	64.7298	20.2	26.36	0.384	0.224	0.1461	0.1243	14.69
0	0	1	500	200	3	22.2821	0.2442	0.3689	1.2781	2.1087	3.1424	74.8134	15.27	26.02	0.186	0.153	0.5722	0.0954	83.23
0	0	1	500	180	3	18.3855	0.3489	0.6844	0.6976	2.2692	3.3232	83.4086	7.943	25.67	0.1666	0.24	0.2331	0.0637	72.78
0	0	1	500	140	3	19.2376	0.5405	1.2/3	1.3865	0	3.2728	//.1512	11.69	25.69	0.0471	0.137	0.9611	0.1569	83.51
0	1	1	500	120	5 27	20.6495	0.0108	1.2100	0.6525	1 7772	3.2224	62 441	29.69	23.39	0.0090	25.9	0.627	0.2303	67.02
0	1	0	450	160	27	21.9313	0.1098	0.6352	1.0958	2 0259	3.2787	72 8794	15.17	26.04	0.2153	0.328	0.5532	0.1139	79.13
0	1	0	500	160	21	27 1974	0.022	1 6468	0.2229	2.1083	3 2846	65 0884	12.71	25.81	0.423	0.836	0.6376	0.2686	57.38
Ő	1	Ő	450	160	21	21.0895	0.3181	2.4427	0.5974	0.6418	3.2891	75.6596	8.786	25.66	0.2545	0.448	0.7496	0.2101	71.79
0	1	0	500	160	15	29.8427	0.0892	2.1167	0.5487	1.2453	3.095	72.3259	14.4	25.71	0.5633	0.836	0.8933	0.2595	70.69
0	1	0	450	160	15	20.9057	0.0485	0.0651	0.8797	3.0067	3.0179	41.9822	23.52	26.61	0.1633	0.328	0.719	0.3558	50.15
0	1	0	500	160	9	28.5631	0.0612	0.8521	0.683	2.4037	3.2861	76.0024	10.57	25.55	0.3307	0.32	0.6284	0.38	39.17
0	1	0	450	160	9	22.1958	0.5329	1.7162	0.751	0	3.3617	84.7942	10.29	25.72	0.1196	0.245	0.8614	0.129	84.99
0	1	0	500	220	3	25.0382	0.0251	0.2198	0.2983	3.4567	3.1201	59.7387	35.46	27.44	0.2671	0.234	0.6116	0.1569	74.12
0	1	0	450	220	3	14.1143	1.2686	0.7314	0	0	3.2076	81.9641	0.618	25.01	0.1046	71.1	7.4785	2.9767	59.89
0	1	0	500	200	3	22.1687	0.0893	0.1003	0.9689	2.8416	3.4121	81.4978	9.198	25.95	0.2784	0.201	0.3243	0.2015	37.47
0	1	0	450	200	3	23.3004	0.1187	0.0997	0.5827	3.1989	3.1187	77.8665	14.09	26.14	0.1016	0.419	1.0473	0.2826	72.84
0	1	0	500	180	3	24.177	0.2401	0.3358	1.5283	1.8959	2.9156	52.3292	41.2	28.53	0.1488	0.096	1.379	0.2317	83.12
0	1	0	450	180	3	14.5167	0.1906	0.0307	1.2368	2.5419	3.3084	84.5259	3.953	25.41	0.0863	0.205	0.6948	0.2009	70.93
U	1	0	500	140	3	22.9347	0.1/01	0.691	0.8932	2.2457	3.2313	09.9945	1/.08	27.00	0.1096	0.0	1.9543	1./811	11.51
0	1	0	450	140	3	23.9757	0.3087	0.7112	1.4129	1.56/2	3.2328	19.3309	15.32	20.48	0.0655	0.1	0.476	0.1154	/5.65

*0 (1) represent precur-sor was not used (was used)

C Codes

Listing S1: Machine-Learning Codes for Data Splitting and Strategy Validation based on Python

```
#Packages Import
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.base import clone
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor,
   AdaBoostRegressor
from sklearn.svm import SVR
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from xgboost import XGBRegressor
import warnings
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.exceptions import ConvergenceWarning
from sklearn.model_selection import LeaveOneOut
# define cross validation function
def cross_val_mse(model, X, y):
   n_{splits} = 5
   kfold = KFold(n_splits, shuffle=True, random_state=42)
  mse_scores = cross_val_score(model, X, y, cv=kfold,
      scoring='neg_mean_squared_error')
   return -1 * np.mean(mse_scores)
# Define features_cols, properties_cols and targets_cols
feature_cols = ["TTIP", "TiEt", "TiBu", "Synthesis Temperature",
   "Bubbler Temperature", "Synthesis Time"]
properties_cols = ["Crystal Size", "101 Phase", "200 Phase", "211
   Phase", "220 Phase",
           "Bandgap", "VLT", "Rg", "SSA", "Charpop", "Charlife"]
targets_cols = ["NO", "NOx"]
all_target_cols = properties_cols+targets_cols
# Initializing Regressors
regressors = [
   ("Linear Regression", LinearRegression()),
   ("Random Forest Regressor", RandomForestRegressor(n_estimators =
      120, random_state = 42)),
   ("SVR", SVR(kernel="linear", C = 0.2, epsilon = 0.05)),
```

```
("Adaboost Regressor", AdaBoostRegressor(n_estimators=100,
      random state=42)),
   ("XGBoost Regressor", XGBRegressor())
1
best_models = {}
# Data Input
data = pd.read_excel('Master ML Data.xlsx')
# LOOCV Method
loo = LeaveOneOut()
all_data_copies = []
all_data_splits = []
for train_index, test_index in loo.split(data):
   # data splitting
   data_copy, data_split = data.iloc[train_index],
      data.iloc[test_index]
   all_data_copies.append(data_copy)
   all_data_splits.append(data_split)
# Define parameter grids for each regressor
param_grids = {
   "Linear Regression": {
      'fit_intercept': [True, False]
   },
   "Random Forest Regressor": {
      'n_estimators': [50, 100, 200],
      'max_depth': [None, 10, 20, 30],
      'min_samples_split': [2, 5, 10],
      'min_samples_leaf': [1, 2, 4],
   },
   "SVR": {
      'C': [0.1, 1, 10, 100],
      'gamma': [1, 0.1, 0.01, 0.001],
      'kernel': ['rbf', 'sigmoid'],
      "max_iter":[10000]
   },
   "Adaboost Regressor": {
      'n_estimators': [50, 100, 200],
      'learning_rate': [0.001, 0.01, 0.1, 1],
   },
   "XGBoost Regressor": {
      'n_estimators': [50, 100, 200],
      'learning_rate': [0.001, 0.01, 0.1, 1],
      'max_depth': [3, 5, 7, 9],
   },
}
```

```
# Run 80 cycles for strategy I
best models = {col: None for col in properties cols + targets cols}
best_model_params = {col: None for col in properties_cols +
   targets_cols}
best_model_names = {col: "" for col in properties_cols +
   targets_cols}
all_mse_division = {col: [] for col in properties_cols +
   targets_cols}
for i, (data_train, data_test) in enumerate(zip(all_data_copies,
   all_data_splits)):
   print(f"Data copy: {i+1}")
   X_train = data_train[feature_cols]
   X_test = data_test[feature_cols]
   for col in best_models.keys():
      y_train = data_train[col]
      y_test = data_test[col]
     min_mse = np.inf
      for name, model in regressors:
         if name in param_grids:
            model = clone(model)
            grid_search = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid_search.fit(X_train, y_train)
            model = grid_search.best_estimator_
            mse_train = -grid_search.best_score_
            if mse_train < min_mse:</pre>
               min_mse = mse_train
               best_models[col] = model
               best_model_params[col] = grid_search.best_params_
               best_model_names[col] = name
      best_models[col].fit(X_train, y_train)
      pred_test = best_models[col].predict(X_test)
      mseerror_test = mean_squared_error(y_test, pred_test)
      mseerror_division = (mseerror_test)
      print(f"real {col} value is: ", data_test[col].values, f"pred
         {col} value is: ", pred_test)
      all_mse_division[col].append(mseerror_division)
      print(f"Best model for {col} is {best_model_names[col]} with
         parameters: {best_model_params[col]} with mse error:
         {np.nanmean(mseerror_division)}")
   print("\n")
for col, mseerror_division in all_mse_division.items():
```

```
print(f"Average mseerror for {col}:
      {np.nanmean(mseerror division)}")
# Run 80 cycles for strategy II
best_models = {col: None for col in targets_cols}
best_model_params = {col: None for col in targets_cols}
best_model_names = {col: "" for col in targets_cols}
all_mse_division = {col: [] for col in targets_cols}
for i, (data_train, data_test) in enumerate(zip(all_data_copies,
   all_data_splits)):
   print(f"Data copy: {i+1}")
   X_train = data_train[properties_cols]
   X_test = data_test[properties_cols]
   for col in best_models.keys():
      y_train = data_train[col]
      y_test = data_test[col]
     min_mse = np.inf
      for name, model in regressors:
         if name in param_grids:
            model = clone(model)
            grid_search = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid_search.fit(X_train, y_train)
            model = grid_search.best_estimator_
            mse_train = -grid_search.best_score_
            if mse_train < min_mse:</pre>
               min_mse = mse_train
               best_models[col] = model
               best_model_params[col] = grid_search.best_params_
               best_model_names[col] = name
      best_models[col].fit(X_train, y_train)
      pred_test = best_models[col].predict(X_test)
      mseerror_test = mean_squared_error(y_test, pred_test)
      mseerror_division = (mseerror_test)
      print(f"real {col} value is: ", data_test[col].values, f"pred
         {col} value is: ", pred_test)
      all_mse_division[col].append(mseerror_division)
      print(f"Best model for {col} is {best_model_names[col]} with
         mse error: {np.nanmean(mseerror_division) }")
   print("\n")
```

```
for col, mseerror_division in all_mse_division.items():
   print(f"Average mseerror for {col}:
      {np.nanmean(mseerror_division)}")
# Run 80 cycles for strategy III
combined_cols = feature_cols + properties_cols
best_models = {col: None for col in targets_cols}
best_model_params = {col: None for col in targets_cols}
best_model_names = {col: "" for col in targets_cols}
all_mse_division = {col: [] for col in targets_cols}
for i, (data_train, data_test) in enumerate(zip(all_data_copies,
   all_data_splits)):
   print(f"Data copy: {i+1}")
   X_train = data_train[combined_cols]
   X_test = data_test[combined_cols]
   for col in best_models.keys():
      y_train = data_train[col]
      y_test = data_test[col]
     min_mse = np.inf
      for name, model in regressors:
         if name in param_grids:
            model = clone(model)
            grid_search = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid_search.fit(X_train, y_train)
            model = grid_search.best_estimator_
            mse_train = -grid_search.best_score_
            if mse_train < min_mse:</pre>
               min_mse = mse_train
               best_models[col] = model
               best_model_params[col] = grid_search.best_params_
               best_model_names[col] = name
      best_models[col].fit(X_train, y_train)
      pred_test = best_models[col].predict(X_test)
      mseerror_test = mean_squared_error(y_test, pred_test)
      mseerror_division = (mseerror_test)
      print(f"real {col} value is: ", data_test[col].values, f"pred
         {col} value is: ", pred_test)
      all_mse_division[col].append(mseerror_division)
      print(f"Best model for {col} is {best_model_names[col]} with
         mse error: {np.nanmean(mseerror_division) }")
```

```
print("\n")
for col, mseerror_division in all_mse_division.items():
  print(f"Average mseerror for {col}:
      {np.nanmean(mseerror_division)}")
# Run 80 cycles for strategy IV
best_grids_prop = {col: None for col in properties_cols}
best_grids_target = {col: None for col in targets_cols}
all_mseerror_divisions_target = {col: [] for col in targets_cols}
for i, (data_train, data_test) in enumerate(zip(all_data_copies,
   all_data_splits)):
   print(f"Data copy: {i+1}")
   X_train = data_train[feature_cols]
   X_test = data_test[feature_cols]
   for col in properties_cols:
      y_train = data_train[col]
      best_score = np.inf
      for name, model in regressors:
         if name in param_grids:
            grid = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid.fit(X_train, y_train)
            if -grid.best_score_ < best_score:</pre>
               best_score = -grid.best_score_
               best_grids_prop[col] = grid
      print(f"Best model for {col} is
         {best_grids_prop[col].best_estimator_}")
   X_train_properties = data_train[properties_cols]
   for col in targets_cols:
      y_train = data_train[col]
      best_score = np.inf
      for name, model in regressors:
         if name in param grids:
            grid = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid.fit(X_train_properties, y_train)
            if -grid.best_score_ < best_score:</pre>
               best_score = -grid.best_score_
               best_grids_target[col] = grid
      print(f"Best model for {col} is
         {best_grids_target[col].best_estimator_}")
   predicted_properties = {col:
      best_grids_prop[col].predict(X_test) for col in
```

```
properties_cols}
   X_test_pred = np.column_stack(([predicted_properties[col] for
      col in properties_cols]))
   for col in ['NO', 'NOx']:
      pred_test_target = best_grids_target[col].predict(X_test_pred)
      Logerror_test_target = log_error(data_test[col],
         pred_test_target)
      mseerror_test_target = mean_squared_error(data_test[col],
         pred_test_target)
      Logerror_division = (Logerror_test_target)
      mseerror_division = (mseerror_test_target)
      print(f"real {col} value is: ", data_test[col].values, f"pred
         {col} value is: ", pred_test_target)
      all_mseerror_divisions_target[col].append(mseerror_division)
      print(f"MSE error for {col} is:
         {np.nanmean(mseerror_division)}")
   print("\n")
for col, mseerror_divisions in
   all_mseerror_divisions_target.items():
   print(f"Average mseerror for {col}:
      {np.nanmean(mseerror_divisions)}")
# Run 80 cycles for strategy V
best_grids_prop = {col: None for col in properties_cols}
best_grids_target = {col: None for col in targets_cols}
all_mseerror_divisions_target = {col: [] for col in targets_cols}
for i, (data_train, data_test) in enumerate(zip(all_data_copies,
   all_data_splits)):
   print(f"Data copy: {i+1}")
   X_train = data_train[feature_cols]
   X_train_prop = data_train[properties_cols]
   X_test = data_test[feature_cols]
   for col in properties cols:
      y_train = data_train[col]
      best_score = np.inf
      for name, model in regressors:
         if name in param_grids:
            grid = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid.fit(X_train, y_train)
            if -grid.best_score_ < best_score:</pre>
               best_score = -grid.best_score_
               best_grids_prop[col] = grid
```

```
print(f"Best model for {col} is
         {best_grids_prop[col].best_estimator_}")
   predicted_properties = {col:
      best_grids_prop[col].predict(X_train).reshape(-1, 1) for col
      in properties_cols}
   X_taget_fit_all = np.concatenate([X_train, X_train_prop], axis=1)
   X_train_all = np.concatenate([X_train,
      *predicted_properties.values()], axis=1)
   for col in targets_cols:
      y train = data train[col]
      best_score = np.inf
      for name, model in regressors:
         if name in param_grids:
            grid = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid.fit(X_taget_fit_all, y_train)
            if -grid.best_score_ < best_score:</pre>
               best_score = -grid.best_score_
               best_grids_target[col] = grid
      print(f"Best model for {col} is
         {best_grids_target[col].best_estimator_}")
   predicted_properties_test = {col:
      best_grids_prop[col].predict(X_test).reshape(-1, 1) for col
      in properties_cols}
   X_test_pred = np.concatenate([X_test,
      *predicted_properties_test.values()], axis=1)
   for col in ['NO', 'NOx']:
      pred_test_target = best_grids_target[col].predict(X_test_pred)
      Logerror_test_target = log_error(data_test[col],
         pred_test_target)
      mseerror_test_target = mean_squared_error(data_test[col],
         pred_test_target)
      Logerror_division = (Logerror_test_target)
      mseerror_division = (mseerror_test_target)
      print(f"real {col} value is: ", data_test[col].values, f"pred
         {col} value is: ", pred_test_target)
      all_mseerror_divisions_target[col].append(mseerror_division)
      print(f" MSE error for {col} is:
         {np.nanmean(mseerror_division)}")
   print("\n")
for col, mseerror_divisions in
   all_mseerror_divisions_target.items():
   print(f"Average mseerror for {col}:
      {np.nanmean(mseerror_divisions)}")
```

```
# Run 80 cycles for strategy VI
best_grids_prop = {col: None for col in properties_cols}
best_grids_target = {col: None for col in targets_cols}
all_mseerror_divisions_target = {col: [] for col in targets_cols}
for i, (data_train, data_test) in enumerate(zip(all_data_copies,
   all_data_splits)):
   print(f"Data copy: {i+1}")
   X_train = data_train[feature_cols]
   X_train_prop = data_train[properties_cols]
   X_test = data_test[feature_cols]
   for col in properties_cols:
      y_train = data_train[col]
      best_score = np.inf
      for name, model in regressors:
         if name in param_grids:
            grid = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid.fit(X_train, y_train)
            if -grid.best_score_ < best_score:</pre>
               best_score = -grid.best_score_
               best_grids_prop[col] = grid
      print(f"Best model for {col} is
         {best_grids_prop[col].best_estimator_}")
   predicted_properties = {col:
      best_grids_prop[col].predict(X_train).reshape(-1, 1) for col
      in properties_cols}
   X_taget_fit_all = np.concatenate([X_train, X_train_prop], axis=1)
   X_train_all = np.concatenate([X_train,
      data_train[properties_cols], *predicted_properties.values()],
      axis=1)
   for col in targets_cols:
      y_train = data_train[col]
      best_score = np.inf
      for name, model in regressors:
         if name in param_grids:
            grid = GridSearchCV(model, param_grids[name],
               scoring='neg_mean_squared_error', cv=5,n_jobs=-1)
            grid.fit(X_train_all, y_train)
            if -grid.best_score_ < best_score:</pre>
               best_score = -grid.best_score_
               best_grids_target[col] = grid
      print(f"Best model for {col} is
         {best_grids_target[col].best_estimator_}")
   predicted_properties_test = {col:
      best_grids_prop[col].predict(X_test).reshape(-1, 1) for col
```

```
in properties_cols}
   X_test_pred = np.concatenate([X_test,
      data_test[properties_cols],
      *predicted_properties_test.values()], axis=1)
   for col in ['NO', 'NOx']:
      pred_test_target = best_grids_target[col].predict(X_test_pred)
      Logerror_test_target = log_error(data_test[col],
         pred_test_target)
     mseerror_test_target = mean_squared_error(data_test[col],
         pred_test_target)
      Logerror_division = (Logerror_test_target)
      mseerror_division = (mseerror_test_target)
      print(f"real {col} value is: ", data_test[col].values, f"pred
         {col} value is: ", pred_test_target)
      # Store MSE division
      all_Logerror_divisions_target[col].append(Logerror_division)
      all_mseerror_divisions_target[col].append(mseerror_division)
      print(f" MSE error for {col} is:
         {np.nanmean(mseerror_division)}")
   print("\n")
for col, mseerror_divisions in
   all_mseerror_divisions_target.items():
   print(f"Average mseerror for {col}:
      {np.nanmean(mseerror divisions)}")
```

References

[1] J. Z. Bloh, A. Folli and D. E. Macphee, *RSC Adv.*, 2014, **4**, 45726–45734.