Self-Assembled Two-Dimensional Metal-Organic Framework Membrane as Nanofluidic Osmotic Power Generator

Yuyu Su,^a Jue Hou, ^a Chen Zhao,^a Qi Han,^b Jian Hu,^a and Huacheng Zhang*^a

^a Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia

^b School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia

* Corresponding authors.

E-mail addresses: huacheng.zhang@rmit.edu.au

Table of Content

Figure S1. The XRD pattern of ZnTCPP membrane.

Figure S2. (a) Cross-section SEM image of the ZnTCPP membrane. (b-d) EDX mapping images of ZnTCPP membrane. The scale bars are $50 \ \mu m$.

Figure S3. The SEM image of the ZnTCPP membrane surface.

Figure S4. (a) The photo of the as-prepared freestanding ZnTCPP membrane. (b-d) The stability testing of the membrane in water for 0h to 24 h.

Figure S5. The *I-V* curves of the ZnTCPP membrane in KCl electrolyte solutions with various concentrations (0.01 mM-1mM).

Figure S6. The SEM images of ZnTCPP membranes with different thicknesses. (a) 4 μ m. (b) 8 μ m. (c) 15 μ m.

Figure S7. The *I-V* curves of the ZnTCPP membrane at different temperatures ranging from 298.15 K to 323.15 K.

Figure S8. The power density and energy conversion efficiency of membranes compared with other membranes in the literature.

Figure S9. The *I-V* curves of the ZnTCPP membrane at different temperatures ranging from 298.15 K to 323.15 K.

Figure S10. The resistance of membranes with different pH values

Figure S11. The cation selectivity of the membrane under 50-fold KCl concentration after 48h.

Table S1. The zeta potentials of ZnTCPP nanosheets in different solutions.

Table S2. The comparison of state-of-the-art membranes for harvesting salinity gradient energy. All the measurements were carried out at 50-fold salinity gradient (0.5 M/0.01 M)

Figure S1. The XRD pattern of ZnTCPP membrane.

Figure S2. (a) Cross-section SEM image of the ZnTCPP membrane. (b-d) EDX mapping images of ZnTCPP membrane. The scale bars are 50 μ m.

Figure S3. The SEM image of the ZnTCPP membrane surface.

Figure S4. (a) The photo of the as-prepared freestanding ZnTCPP membrane. (b-d) The stability testing of the membrane in water for 0h to 24 h.

Figure S5. The *I-V* curves of the ZnTCPP membrane in KCl electrolyte solutions with various concentrations (0.01 mM-1mM).

Figure S6. The SEM images of ZnTCPP membranes with different thicknesses. (a) 4 μ m. (b) 8 μ m. (c) 15 μ m.

Figure S7. The resistance of membranes with different thicknesses

Figure S8. The power density and energy conversion efficiency of membranes compared with other membranes in the literature.

Figure S9. The *I-V* curves of the ZnTCPP membrane at different temperatures ranging from 298.15 K to 323.15 K.

Figure S10. The resistance of membranes with different pH values.

Figure S11. The cation selectivity of the membrane under 50-fold KCl concentration after 48 h.

Table S1. The zeta potentials of ZnTCPP nanosheets in different solutions.

ZnTCPP nanosheets	pH=4	pH=6	pH=10
water	6.27 mV	-33.3 mV	-27.9 mV
0.01M KCl	-4.39 mV	-21.5 mV	-13.8 mV
0.1 M KC1	-3.62 mV	-16.3 mV	-10.3 mV
0.5 M KCl	-7.27 mV	-15 mV	-7.8 mV

Table S2. The comparison of state-of-the-art membranes for harvesting salinity gradient energy. The power density and efficiency were measured at a 50-fold salinity gradient (0.5 M/0.01 M)

Membrane	Electrolyte	Measured	Membrane	Cation	Efficiency	Power	ref
	-	area (mm ²)	thickness	selectivity	(%)	density	
			(µm)	(t ₊)		$(W m^{-2})$	
Silk/GO	NaC1	0.03	5	0.7-0.8	27.2	5.07	[1]
GO/CNFs	NaCl	0.03	9	0.58-0.8	30	4.19	[2]
MXene/BN	NaCl	0.03	10	0.7-0.8	21.1	2.3	[3]
AAO/SNF	NaCl	0.03	5	-	17.2	2.43	[4]
AAO/ionomer	KC1	0.03	10.3	0.823	27.2	3.15	[5]
PSS-	NaCl	0.03	1.6	-		2.87	[6]
MOF/AAO							
IDM	NaCl	0.03	4.2	0.77	26.5	3.46	[7]
MXene	NaCl	0.03	15	-	45.6	0.53	[8]

GOM	NaCl	0.8	10	0.6-0.9	36.6	0.77	[9]
Block copolymer membrane	NaCl	0.03	14	-	24.3	2.1	[10]
ZnTCPP	KC1	0.03	8	0.79-0.9	30	2.85	This work

Reference:

- [1] W. Xin, H. Xiao, X.-Y. Kong, J. Chen, L. Yang, B. Niu, Y. Qian, Y. Teng, L. Jiang, L. Wen, Biomimetic nacre-like silk-crosslinked membranes for osmotic energy harvesting, ACS Nano 14 (2020) 9701-9710.
- [2] Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian, Y. Sun, X. Zhao, W. Chen, L. Jiang, L. Wen, Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting, Mater. Horiz. 7 (2020) 2702-2709.
- [3] G. Yang, D. Liu, C. Chen, Y. Qian, Y. Su, S. Qin, L. Zhang, X. Wang, L. Sun, W. Lei, Stable Ti₃C₂Tx mxene–boron nitride membranes with low internal resistance for enhanced salinity gradient energy harvesting, ACS Nano 15 (2021) 6594-6603.
- [4] W. Xin, Z. Zhang, X. Huang, Y. Hu, T. Zhou, C. Zhu, X.-Y. Kong, L. Jiang, L. Wen, High-performance silk-based hybrid membranes employed for osmotic energy conversion, Nat. Commun. 10 (2019) 3876.
- [5] T. Xiao, Q. Zhang, J. Jiang, J. Ma, Q. Liu, B. Lu, Z. Liu, J. Zhai, pH-Resistant Nanofluidic Diode Membrane for High-Performance Conversion of Salinity Gradient into Electric Energy, Energy Technol. 7 (2019) 1800952.
- [6] R. Li, J. Jiang, Q. Liu, Z. Xie, J. Zhai, Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation, Nano Energy 53 (2018) 643-649.
- [7] J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc. 136 (2014) 12265-12272.
- [8] P. Liu, Y. Sun, C. Zhu, B. Niu, X. Huang, X.-Y. Kong, L. Jiang, L. Wen, Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting, Nano Letters 20 (2020) 3593-3601.
- [9] J. Ji, Q. Kang, Y. Zhou, Y. Feng, X. Chen, J. Yuan, W. Guo, Y. Wei, L. Jiang, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater. 27 (2017) 1603623.
- [10] Z. Zhang, X. Sui, P. Li, G. Xie, X.-Y. Kong, K. Xiao, L. Gao, L. Wen, L. Jiang, Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion, J. Am. Chem. Soc. 139 (2017) 8905-8914.