Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1	Supporting Information				
2	The construction of a photocatalytic fuel cell based on piezoelectric-enhanced				
3	dual heterojunctions of PVDF-HFP supported 2D/3D composites toward				
4	photocatalytic degradation of tetracycline				
5					
6	Tingting Yu ^{a,*} , Bing Yang ^a , Ran Deng ^a , Tao Yang ^a , Jizhou Jiang ^{b,*}				
7					
8	^a School of Environmental and Chemical Engineering, Jiangsu Ocean University,				
9	Lianyungang 222005, PR China.				
10	^b School of Environmental Ecology and Biological Engineering, Key Laboratory of				
11	Green Chemical Engineering Process of Ministry of Education, Engineering Research				
12	Center of Phosphorus Resources Development and Utilization of Ministry of				
13	Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan				
14	Institute of Technology, Wuhan 430205, China.				
15					
16	*Corresponding author's email: <u>ting@jou.edu.cn</u> (T. Yu); <u>027wit@163.com</u> (J. Jiang)				

- 19 Fig. S1 Photos of (a) MoS₂-rGO/ZnO@PVDF-HFP, (b) BiOBr/g-C₃N₄@PVDF-HFP,
- 20 and (c) PVDF-HFP.
- 21
- 22
- 23

27 Fig. S2 SEM images of PFC after material cycling at two poles: (a) MoS_2 -28 rGO/ZnO@PVDF-HFP, (b) BiOBr/g-C₃N₄@PVDF-HFP.

24

33 Fig. S3 EDS analysis of the $BiOBr/g\text{-}C_3N_4$ composite displays the intensity of

34 elements such as C, N, Bi, Oand Br.

35

37

38 Table S1 Pore properties and BET surface area data. (Adsorbent: N_2 , temperature:

3	9
5	/

150°C, instrument model: BSD-PM).

	BET surface		Pore size
Catalysts	area (m 2 g $^{-1}$)	Pore volume (cm ³ g ⁻¹)	(nm)
MoS_2	9.8248	0.0572	23.2880
MoS ₂ -rGO	20.3196	0.1264	24.8824
ZnO	10.2412	0.0818	31.9494
MoS ₂ -rGO/ZnO	28.219	0.1814	25.71
$g-C_3N_4$	25.1027	0.1796	28.6184
BiOBr	5.8179	0.0402	27.6388
BiOBr/g-C ₃ N ₄	8.9615	0.0843	37.6276

50 Fig. S5 (a) Full spectra of XPS: single material and composite material before and 51 after degradation. (b) C1s, (c) N 1s, (d) O 1s, (e) Bi 4f, (f) Br 3d, (g) F 1s.

Fig. S6 Water contact angles.

62 Fig. S7 Adsorption of TC by different materials during 110 minutes of dark standing.

Fig. S8 Exploration conditions of photocatalytic properties: (a) influence of
membrane area size on TC degradation rate, (b) film thickness, (c) system
construction. Pseudo-first-order kinetic curve of degradation rate: (d) Piezoelectric
illumination factor; (e) pH. (f) Effect of different anions on TC degradation rate in
water.

76 Fig. S9 XRD patterns of bipolar materials after 5 cycles of photocatalytic degradation77 of TC.

81 Fig. S10 XPS spectra of cathode material before and after cycle: (a) C1s, (b) N 1s, (c)

82 O 1s, (d) Bi 4f, (e) Br 3d.

86 Fig. S11 XPS spectra of anode material before and after cycle: (a) C 1s, (b) Zn 2p, (c)

87 O 1s, (d) Mo 3d, (e) S 2p.

90 Table S2 Statistics of TOC removal rate of pollutants by electrode materials in

		Concentrati		T A A	Ref.
Cathode	Anode	on	Time	TOC	
		$(mg \cdot L^{-1})$		(, ,)	
Pt	TiO ₂ /Ti	20	60	34.87	[57]
TiO ₂ /BJS	Fe-NiCo ₂ S ₄	45	90	74.12	[20]
Pt	Cr-BOC/Ag	20	120	54.37	[9]
CuCoCe	CQDs-TiO ₂	45	60	75	[3]
WO ₃	g-C ₃ N ₄ /FeO(1%)/TiO ₂	10	90	65.4	[58]
Pt	Si PVC/ STNR	20	360	63.4	[59]
MoS ₂ -	BiOBr/g-C ₃ N ₄ @PVDF-	20	00	85 61	This work
rGO/ZnO@PVDF-HFP	HFP		20	05.01	

91 different PFC systems. (Pollutant: TC).

97 Fig. S12 MoS2-rGO/ZnO@PVDF-HFP (1:0.7) m/z value of TC degradation. (TC

