Spatial Tuning of Adsorption Enthalpies by Exploiting Spectator Group Effects in Organosilica Carbon Capture Materials

Mario Evers,^a Karin Hauser^b, Wolfgang G. Hinze,^b Nele Klinkenberg,^b Yasar Krysiak,^a Daniel Mombers,^{a,‡} Sebastian Polarz^{a,‡,*}

SUPPORTING INFORMATION

Fig. S1. Analytical Data for AzSil.

(a) SEM micrograph; scalebar = $1\mu m$.

(b) N₂ physisorption isotherm; $A_{BET} = 694 \text{ m}^2/\text{g}.$

(c) FT-IR spectrum. ν (cm⁻¹) = 1044 (Si-O), 1316 (C(sp3)-C(sp3)), 1466 (C(sp3)C(sp3)), 2100 (N₃) 2851, 2920 (C-H), 3300 (OH).

(d) ¹H-NMR of dissolved material; (*) : 7.35 (m, 2H, o-arom. CH), (**) : 7.75 (m, 1H, p-arom. CH).

(e) TGA in air.

(f) Photographic image of monolithic aerogel obtained after supercritical drying.

Fig. S2. Analytical Data for AmSil.

(a) SEM micrograph; scalebar = $1 \mu m$.

(b) N₂ physisorption isotherm; $A_{BET} = 527 \text{ m}^2/\text{g}.$

(c) FT-IR spectrum. v (cm⁻¹) = 1044 (Si-O), 1316 (C(sp3)-C(sp3)), 1466 (C(sp3)C(sp3)), 2100 (N₃) 2851, 2920 (C-H), 3300 (OH).

(d) ¹H-NMR of dissolved material; (*) : 7.35 (m, 2H, o-arom. CH), (**) : 7.75 (m, 1H, p-arom. CH).

(e) TGA in air.

(f) Photographic image of monolithic aerogel obtained after supercritical drying.

Fig. S3. Analytical Data for AmSP(a)Sil.

(a) SEM micrograph; scalebar = $1\mu m$.

(b) N_2 physisorption isotherm; $A_{BET} = 505 \ m^2/g.$

(c) FT-IR spectrum.

(d) TGA in air.

Fig. S4. Analytical Data for AmSP(b)Sil.

⁽a) SEM micrograph; scalebar = $1\mu m$.

(b) N_2 physisorption isotherm; $A_{BET}\,{=}\,460~m^2/g.$

(d) $^{13}\text{C-MAS}$ NMR. Asterisk (*) in (C) denotes a spinning side band.

(e) TGA in air.

Fig. S5. Analytical Data for AmSP(c)Sil.

(a) SEM micrograph; scalebar = $1\mu m$.

(b) N₂ physisorption isotherm; $A_{BET} = 491 \text{ m}^2/\text{g}.$

(c) FT-IR spectrum. **ATR-IR**: v (cm⁻¹) = 1044 (Si-O), 1114(CF3), 1288 (CF3), 1316 (C(sp3)-C(sp3)), 1466 (C(sp3)C(sp3)), 1578 (NH3), 2115 (N₃) 2851, 2920 (C-H), 3300 (OH)

(d) ¹H-NMR of dissolved material.

(e) TGA in air.

Fig. S6. Analytical Data for AmSP(d)Sil.

(a) SEM micrograph; scalebar = $5\mu m$.

(b) N₂ physisorption isotherm; $A_{BET} = 330 \text{ m}^2/\text{g}.$

(c) FT-IR spectrum. ATR-IR

(d) ¹H-NMR of dissolved material (aromatic region)

(e) TGA in air.

Fig. S7. Analytical Data for AmSP(e)Sil.

(a) SEM micrograph; scalebar = $1\mu m$.

(b) N₂ physisorption isotherm; $A_{BET} = 323 \text{ m}^2/\text{g}.$

(c) FT-IR spectrum. **ATR-IR**: v (cm⁻¹) = 1044 (Si-O), 1316 (C(sp3)-C(sp3)), 1466 (C(sp3)C(sp3)), 1578 (def. OH 1623 2115 (N₃), 2851, 2920 (C-H), 3300 (OH)

(d) ¹H-NMR of dissolved material.

(e) TGA in air.

Fig. S8. Analytical Data for AmSP(f)Sil.

(a) SEM micrograph; scalebar = 100 nm.

(b) N₂ physisorption isotherm; $A_{BET} = 351 \text{ m}^2/\text{g}.$

(c) FT-IR spectrum. **ATR-IR**: v (cm⁻¹) = 1044 (Si-O), 1316 (C(sp3)-C(sp3)), 1466 (C(sp3)C(sp3)), 1578 (NH3) 2115 (N₃), 2851, 2920 (C-H), 3300 (OH)

(d) ¹H-NMR of dissolved material.

(e) TGA in air.

Fig. S9. H₂O adsorption on organosilica materials.

Fig. S10. Carbon Dioxide Adsorption

(a) CO₂(g) adsorption isotherms of AmSil measured a $T = 0^{\circ}C$ (red), 30°C (grey), 40°C (black), 50°C (blue).

(b) $CO_2(g)$ adsorption isotherms of AmSp(a) measured a T = 0°C (red), 30°C (grey), 40°C (black), 50°C (blue).

(c) $CO_2(g)$ adsorption isotherms of AmSp(b) measured a T = 0°C (red), 30°C (grey), 40°C (black), 50°C (blue).

(d) $CO_2(g)$ adsorption isotherms of AmSp(c) measured a T = 0°C (red), 30°C (grey), 40°C (black), 50°C (blue).

(e) CO₂(g) adsorption isotherms of AmSp(d) measured a T = 0°C (red), 30°C (grey), 40°C (black), 50°C (blue).

(f) CO₂(g) adsorption isotherms of AmSp(e) measured a T = 0°C (red), 30°C (grey), 40°C (black), 50°C (blue).

(g) CO₂(g) adsorption isotherms of AmSp(f) measured a T = 0°C (red), 30°C (grey), 40°C (black), 50°C (blue).

IR spectra recorded along the gradient.