Supporting Information

Metal-free Polymeric and Molecular Disorder/Order Semiconductor Heterojunction for Visible-light Photocatalytic Minisci-Type

Reaction

Peihe Li,^{a,} * Qingguang Li,^a Gelan Wang,^a Ye Lu,^a Limei Duan ^a Jie Bai,^c Sarina

Sarina,^b and Jinghai Liu^{a,} *

^aInner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, China. *Email: phli2018@foxmail.com; jhliu2008@sinano.ac.cn.*

^bSchool of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW 2037, Australia.

^cChemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China

Supporting Information Table of Contents

1	Figure S1. UV-Vis DRS spectrum of PTCDA, $g-C_3N_4$, and PTCDA/ $g-C_3N_4$.	S3
2	Figure S2. Tauc plot of the UV-Vis DRS spectrum of PTCDA, $g-C_3N_4$ and PTCDA/ $g-C_3N_4$.	S4
3	Figure S3. IR spectra of the PTCDA, $g-C_3N_4$, and PTCDA/ $g-C_3N_4$.	S5
4	Figure S4. Specific surface area (SSA) and BJH pore size distributions for $g-C_3N_4$ and $PTCDA/g-C_3N_4$.	S6
5	Figure S5. XPS spectra of PTCDA, g-C ₃ N ₄ , and PTCDA/g-C ₃ N ₄ .	S 7
6	Figure S6. VB-XPS of PTCDA and $g-C_3N_4$.	S 8
7	Figure S7. The emission spectrum of experiment lamps.	S9
8	Figure S8. UV-Vis absorption spectra of the permanganate disappear.	S10
9	Figure S9. The open-loop of 2a under the UV and 365 nm LED light irradiation.	S11
10	Scheme S1. Radical-trapping experiments and Kinetic isotope effect (KIE) experiment.	S12
11	Quantum efficiency calculations.	S13
12	Figure S10. Electrochemical impedance spectra of $g-C_3N_4$ and $PTCDA/g-C_3N_4$.	S14
13	Figure S11. Tapping-mode AFM images in air for the electrode surface. (a) g-C ₃ N ₄ , (b) PTCDA, (c) PTCDA/g-C ₃ N ₄ .	S15
14	Figure S12. The molecular structure of PTCDA and PTCDI.	S15
15	Figure S13. Reusability tests using the isolated $PTCDA/g-C_3N_4$ photocatalyst	S16
16	Spectroscopic data of products	S17
17	NMR Spectra	S22
18	HRMS of 3i	S31

Figure S1. UV-Vis DRS spectrum of PTCDA, $g-C_3N_4$, and PTCDA/ $g-C_3N_4$.

Figure S2. Tauc plot of the UV-Vis DRS spectrum of PTCDA, $g-C_3N_4$ and PTCDA/ $g-C_3N_4$.

Figure S3. IR spectra of the g-C₃N₄ (black), PTCDA (blue), and as-prepared PTCDA/ g-C₃N₄ (red).

Figure S4. Specific surface area (SSA) and BJH pore size distributions for $g-C_3N_4$ and PTCDA/g-C₃N₄. (a) and (b) pore size distribution and pore volume analyzed according to Barret-Joyner-Halenda (BJH) method for $g-C_3N_4$ and PTCDA/g-C₃N₄. N₂ adsorption/desorption isotherms: (c) the SSA of $g-C_3N_4$ is 82.833 m²/g, and (d) PTCDA/g-C₃N₄ is 55.229 m²/g.

Figure S5. XPS spectra: (a) A whole scanning XPS spectra. (b) C 1s of the PTCDA, g- C_3N_4 , and PTCDA/g- C_3N_4 . (c) N 1s of the PTCDA, g- C_3N_4 , and PTCDA/g- C_3N_4 . (d) O 1s of the PTCDA, g- C_3N_4 , and PTCDA/g- C_3N_4 .

Figure S6. VB-XPS of PTCDA and g-C₃N₄.

Figure S7. The emission spectrum of experiment lamps (Xe lamp and light-emitting diode (LED)).

Figure S8. UV-Vis absorption spectra of the permanganate (MnO_4^{-1}) disappeared after addition the catalytic reaction solution ((1) = the reaction solution after photocatalysis).

We confirmed the formation of H_2O_2 by UV/Vis monitor of the disappear of the permanganate (MnO₄⁻¹) in aqueous solution. When the over amount of (1) (the reaction solution after photocatalysis) was added in the permanganate (MnO₄⁻¹) solution (5 ml, 0.2 mM) in the presence of hydrogen ions (H⁺) (1 mL, 2M H₂SO₄), the MnO₄⁻ can be reduced to Mn²⁺, which shows the disappear of the characteristic peaks at ca. 450-600 nm (maximum absorption peak at 525 ± 1 nm) in UV/Vis spectra. At the same time, the red color of potassium permanganate solution disappeared (See the following picture).

$$2MnO_4^- + 5H_2O_2 + 6H^+ = 2Mn^{2+} + 5O_2^+ + 8H_2O_2^-$$

MnO₄⁻ solution 5 mL (0.2 mM)

Figure S9. The open-loop of 2a under the UV and 365 nm LED light irradiation.

Radical-trapping experiments and Kinetic isotope effect (KIE) experiment.

Radical-trapping experiments (i): The reaction was performed in a 20 mL quartz vial with 2 mL tetrahydrofuran containing 2 mg PTCDA/g-C₃N₄ photocatalyst, 1.5 equiv of HCl (36-38 wt%), 0.5 mmol 4-methylquinoline and 2,2,6,6-Tetramethyl-1piperidinyloxy (TEMPO) (2 equiv.) at room temperature under air conditions. The reactor was illuminated by a 490 nm LED light with a light intensity of 7.05 mW cm⁻² for 30 h (Scheme S1).

Kinetic isotope effect (KIE) experiment (ii): The reaction was performed in a 20 mL quartz vial with 2 mL tetrahydrofuran or tetrahydrofuran-D8 (CAS: 1693-74-9) containing 2 mg PTCDA/g-C₃N₄ photocatalyst, 1.5 equiv of HCl (36-38 wt%), 0.5 mmol 4-methylquinoline at room temperature under air conditions. The reactor was illuminated by a 490 nm LED light with a light intensity of 7.05 mW cm⁻² for 30 h (Scheme S1). After completion of the reaction, the catalyst was separated by centrifugation and washed with ethyl acetate. The reaction was quenched with 5 mL saturated ammonium chloride, 5 mL saturated sodium bicarbonate, and extracted with ethyl acetate (3×10 mL), the organic layer was washed with H₂O, brine, dried over MgSO₄, and purified by silica gel flash chromatography using a mixture of petroleum ether and ethyl acetate to provide the desired product.

Scheme S1. Mechanistic experiments.

(i) Radical-Trapping Experiments (2 mg), 490 nm LED O₂ (Air), 30 h, rt TEMPO (2.0 equiv.) 2a 1a (ii) Kinetic Isotopic Effect Experiment TCDA/g-C₃N₄ (2 mg HCI (1.5 equiv.), O₂ (Air), 30 h, rt

3aa

TEMPO trapped product 3aa is confirmed by HRMS

Quantum efficiency calculations.

The QE determination at $\lambda_0 = 490$ nm. The catalyst solution was irradiated by a 15 W LED with a $\lambda_0 \pm 20$ nm band-pass filter for 30 hours. The average intensity of irradiation was determined to be 7.05 mW/cm² by an ILT 950 spectroradiometer (International Light Technologies) and the irradiation area was 3.02 cm². The number of incident photons (N) is 5.668 × 10²¹ as calculated by equation (1). The yield of **3a** is 86%, The amount of **3a** molecules generated in 30 hours was 0.5 × 86% mmol. The quantum efficiency is calculated from equation (2).

$$N = \frac{E\lambda}{hc} = \frac{7.05 \times 10^{-3} \times 3.02 \times 30 \times 3600 \times 490 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}} \left(\frac{W/cm^{2} \times cm^{2} \times s \times m}{J \cdot s \times m/s}\right) = 5.668 \times 10^{21}$$
(1)

$$QE = \frac{2 \times \text{the number of evolved } H_{2} \text{ molecules}}{\text{the number of incident photons}} \times 100\%$$

$$= \frac{2 \times 6.02 \times 10^{23} \times 0.5 \times 0.86 \times 10^{-3}}{5.668 \times 10^{21}} \times 100\% = 9.13\%$$
(2)

Figure S10. Electrochemical impedance spectroscopy (EIS) spectra of $g-C_3N_4$, PTCDA and PTCDA/g-C_3N_4.

Figure S11. Tapping-mode AFM images in air for the electrode surface. (a) $g-C_3N_4$, (b) PTCDA, (c) PTCDA/g-C_3N_4.

Figure S12. The molecular structure of PTCDA and PTCDI.

Figure S13. Reusability tests using the isolated PTCDA/g-C₃N₄ photocatalyst (Legend: blue bar, 1a conversion; red bar, 3a selectivity.).

Spectroscopic data of products **Table 3, entry 1**

4-methyl-2-(tetrahydrofuran-2-yl)quinolone (3a). Oil; $R_f = 0.5$ (hexane:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.68 (t, J = 7.1 Hz, 1H), 7.52 (t, J = 7.1 Hz, 1H), 7.44 (s, 1H), 5.13 (t, J = 7.0 Hz, 1H), 4.17 (dd, J = 14.8, 6.7 Hz, 1H), 4.03 (dd, J = 14.8, 6.8 Hz, 1H), 2.70 (s, 3H), 2.50 (dd, J = 11.8, 5.5 Hz, 1H), 2.23-1.81 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.5, 147.7, 145.3, 129.9, 129.5, 127.8, 126.2, 124.0, 119.0, 82.4, 69.6, 33.7, 26.3, 19.3. (Spectra data are consistent with those reported in the literature: H. Zhao, Z. Li and J. Jin, *New J. Chem.*, **2019**, *43*, 12533-12537.)

Table 3, entry 2

4-methyl-2-(tetrahydro-2*H***-pyran-2-yl)quinolon (3b).** Oil; $R_f = 0.5$ (hexane:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.46 (s, 1H), 4.60 (d, J = 11.1 Hz, 1H), 4.21 (d, J = 11.2 Hz, 1H), 3.69 (t, J = 11.1 Hz, 1H), 2.71 (s, 3H), 2.09 (d, J = 13.0 Hz, 1H), 1.98 (s, 1H), 1.76 (t, J = 9.2 Hz, 2H), 1.64 (t, J = 11.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 162.0, 147.0, 144.9, 129.5, 128.9, 127.4, 125.7, 123.5, 118.7, 81.5, 68.8, 32.7, 25.7, 23.6, 18.7. (Spectra data are consistent with those reported in the literature: H. Zhao, Z. Li and J. Jin, *New J. Chem.*, **2019**, *43*, 12533-12537.)

Table 3, entry 3

2-(1,4-dioxan-2-yl)-4-methylquinoline (3c). White solid; $R_f = 0.5$ (hexane:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.70 (t, J = 8.3 Hz, 1H), 7.55 (t, J = 7.0 Hz, 1H), 7.46 (s, 1H), 4.90 (dd, J = 10.1, 2.8 Hz, 1H), 4.23 (dd, J = 11.6, 2.7 Hz, 1H), 4.01 (dd, J = 10.4, 2.7 Hz, 2H), 3.82 (dd, 2H), 3.63 (t, 1H), 2.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.2, 147.6, 145.6, 130.1, 129.7, 128.0, 126.6, 124.1, 119.5, 79.2, 71.5, 67.5, 66.8, 19.3. (Spectra data are consistent with those reported in the literature: H. Zhao, Z. Li and J. Jin, *New J. Chem.*, **2019**, *43*, 12533-12537.)

Table 3, entry 4

1-(4-methylquinolin-2-yl)ethanol (3d). Oil; $R_f = 0.6$ (hexane:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.18 (s, 1H), 5.14 (br s, 1H), 4.99 (dd, J = 6.6 Hz, 1H), 2.72 (s, 3H), 1.57 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 146.1, 145.3, 129.5, 129.3, 127.5, 126.2, 123.8, 118.6, 68.6, 24.1, 19.0. (Spectra data are consistent with those reported in the literature: H. Zhao, Z. Li and J. Jin, *New J. Chem.*, **2019**, *43*, 12533-12537.)

Tabel 3, entry 5

2-methyl-4-(tetrahydrofuran-2-yl)quinolone (3e). Oil; $R_f = 0.5$ (hexane:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.45 (s, 1H), 5.58 (t, J = 7.1 Hz, 1H), 4.23 (td, J = 7.6, 5.7 Hz, 1H), 4.05 (dd, J = 15.3, 7.2 Hz, 1H), 2.74 (s, 3H), 2.65–2.58 (m, 1H), 2.21–1.97 (m, 2H), 1.88–1.81 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4, 148.1, 129.7, 129.6, 129.4, 125.9, 124.2, 123.4, 117.6, 75.7, 69.4, 34.3, 26.4, 25.8. (Spectra data are consistent with those reported in the literature: A. Vijeta and E. Reisner, *Chem. Commun.*, **2019**, 55, 14007-14010.)

Table 3, entry 6

2-methyl-4-(tetrahydro-2H-pyran-2-yl)quinolone (3f). Oil; $R_f = 0.45$ (hexane:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.45 (s, 1H), 5.02 (d, J = 10.0 Hz, 1H), 4.26 (d, J = 10.0 Hz, 1H), 3.77 (d, J = 11.8 Hz, 1H), 2.74 (s, 3H), 2.07–1.99 (m, 2H), 1.82–1.76 (m, 2H), 1.69–1.58 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 149.0, 148.2, 129.7, 129.3, 125.9, 123.9, 123.1, 118.6, 76.5, 69.6, 34.0, 26.3, 25.8, 24.4. (Spectra data are consistent with those reported in the literature: J. Jin and D. W. C. MacMillan, *Angew. Chem. Int. Ed.*, **2015**, *54*, 1565-1569.)

4-(1,4-dioxan-2-yl)-2-methylquinoline (3g). Oil; $R_f = 0.5$ (hexane:EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.49 (s, 1H), 5.36 (d, J = 9.3 Hz, 1H), 4.12 (d, J = 11.8 Hz, 1H), 4.07–4.05 (m, 2H), 3.91–3.88 (m, 1H), 3.84–3.74 (m, 1H), 3.46 (t, J = 10.5 Hz, 1H), 2.75 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.2, 147.9, 143.5, 129.7, 129.3, 126.0, 123.6, 122.4, 119.1, 74.2, 72.1, 67.4, 66.7, 25.6. (Spectra data are consistent with those reported in the literature: M. C. Quattrini, S. Fujii, K. Yamada, T. Fukuyama, D. Ravelli, M. Fagnoni and L. Ryu, *Chem. Commun.* **2017**, *53*, 2335-2338.)

Table 3, entry 8

2-phenyl-4-(tetrahydrofuran-2-yl)quinolone (3h). Oil; $R_f = 0.35$ (hexane:EtOAc = 15:1); ¹H NMR (500 MHz, CDCl₃) δ 8.22 (dd, J = 7.8, 4.7 Hz, 3H), 8.06 (s, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.53 (dd, J = 14.0, 6.8 Hz, 3H), 7.47 (t, J = 6.9 Hz, 1H), 5.66 (t, J = 7.1 Hz, 1H), 4.28 (dd, J = 15.0, 5.7 Hz, 1H), 4.08 (dd, J = 15.0, 7.4 Hz, 1H), 2.68–2.62 (m, 1H), 2.11–1.98 (m, 2H), 1.93–1.86 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 150.0, 148.5, 140.0, 130.7, 129.3, 129.2, 128.8, 127.7, 126.1, 124.6, 123.1, 114.4, 77.1, 69.1, 34.1, 26.1. (Spectra data are consistent with those reported in the literature: C.-Y. Huang, J. Li, W. Liu and C.-J. Li, *Chem. Sci.* **2019**, *10*, 5018-5024.)

1-(2-phenylquinolin-4-yl)butan-1-ol (3i). Oil; $R_f = 0.35$ (hexane:EtOAc = 15:1); ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 1H), 8.00-7.98 (m, 2H), 7.83-7.77 (m, 2H), 7.66 (t, 1H), 7.44-7.42 (m, 4H), 5.31-5.23 (m, 1H), 4.26 (br s, 1H), 1.79-1.74 (m, 2H), 1.55-1.46 (m, 2H), 0.96-0.92 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 151.5, 148.1, 139.4, 130.3, 129.5, 129.3, 128.8, 127.6, 126.1, 124.5, 122.9, 115.2, 69.9, 40.5, 19.3, 13.9; HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₀NO 278.154; found 278.151.

Table 3, entry 10

1-(benzo[d]thiazol-2-yl)butan-1-ol (3j). Oil; $R_f = 0.35$ (hexane:EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 5.13-5.10 (m, 1H), 3.06 (d, J = 7.6 Hz, 1H), 2.05-1.98 (m, 1H), 1.95-1.88 (m, 1H), 1.59-1.52 (m, 2H), 0.99 (t, J = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.1, 152.8, 134.9, 126.1, 125.0, 122.9, 121.9, 72.2, 40.2, 18.4, 13.9. (Spectra data are consistent with those reported in the literature: T. He, L. Yu, L. Zhang, L. Wang and M. Wang, *Org. Lett.*, **2011**, *13*, 5016-5019.)

NMR Spectra

¹H NMR and ¹³C NMR Spectrum of **3a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of $\mathbf{3b}$

8.07 7.96 7.96 7.68 7.58 7.56 7.50 7.50 7.50	4.62 4.59 4.20 3.72 3.67 3.67	2.71 2.11 2.11 2.08 1.78 1.78 1.78 1.66 1.66
	\vee \vee \vee	

¹H NMR and ¹³C NMR Spectrum of **3c**

¹H NMR and ¹³C NMR Spectrum of **3d**

06 55 55 55 55 55 55 55 55 55 55 55 55 55	410 99 97 97	72	56
0000000000000	522	5	5

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 3e

8.07 8.07 8.07 8.07 7.186 7.17 66 7.17 66 7.17 66 7.17 66 7.17 66 7.17 66 7.17 66 7.17 7.17	5.57	2.14 2.14 2.14 2.14 2.14 2.14 2.14 2.14	2.10 2.10 2.10 2.00 2.00 2.00 2.00 2.00
---	------	--	--

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 3f

8.06 8.06 7.1.92 7.1.67 7.1.67 7.1.67 7.1.68 7.1.458 7.1.458 7.1.458	5.03	<4.27 4.25	<3.78 3.75	-2.74 2.007 2.007 2.002
---	------	---------------	---------------	---

¹H NMR and ¹³C NMR Spectrum of **3g**

88.223 88.221 88.220 88.220 88.220 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.7.73 7.77 7.75 7.77 7.75 7.77 7.75 7.77 7.75 7.77 7.757 7.757 7.757 7.757 7.7577 7.7577777777	5.67 5.66 5.64	4.06 4.06 4.06	2.68 2.65 2.65 2.65 2.63 2.62	2.11 2.12 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.0
--	----------------------	----------------------	--	---

Table 3, entry 8

f1 (ppm)

HRMS of **3i**

¹H NMR and ¹³C NMR Spectrum of **3j**

99 99 90 90 90 90 90 90 90 90 90 90 90 9	22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000 000 000 000 000 000 000 000 00	888 557 555 556 557 552 552 999 900
ファット・ファット・	ທ່ທ່ທ່ທ່ຕ່ຕ່ຕ່ດໄດ້ດ່ດ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Table 3, entry 10

юн 3j 1.00 [⊥] 0.99 [⊥] 1.04₄ 1.05⁴ 1.07 1.01₄ 2.07₋ 1.05 3.01-1.0 9.5 8.0 7.5 10.0 9.0 8.5 7.0 3.5 3.0 2.5 2.0 1.5 0.5 6.5 5.0 f1 (ppm) 4.0 6.0 5.5 4.5 — 176.14 ____152.82 — 134.86 ∠ 126.11 ∠ 125.03 ∼ 122.89 ∖ 121.87 — 72.23 — 18.44 — 13.86 — 40.21 Table 3, entry 10 ЮH N 3j 60 140 120 110 100 f1 (ppm) 80 70 50 40 30 20 10 200 190 180 170 160 150 130 90