Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Nylon binder unlocks high-performance flexible thick electrodes prepared in water-based environment

Li Jiang, ‡ ^a GuoJing Zang, ‡ ^a Xiu Liu, ^a Ling Chen, ^a Yaoguang Chen, ^b Jinghao Xie, ^a Zhongxin Liang, ^c Fuzhen Li, ^a Zishou Zhang * ^a

- a. Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou510275, China. E-mail: zhzish@mail.sysu.edu.cn
- b. School of Chemistry and Chemical Engineering, Lingnan Normal University, Guangdong, 524048, China.
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), Houston, TX
 77204, USA.

[‡] L. J. and G. Z. contributed equally to this work.

Figures:

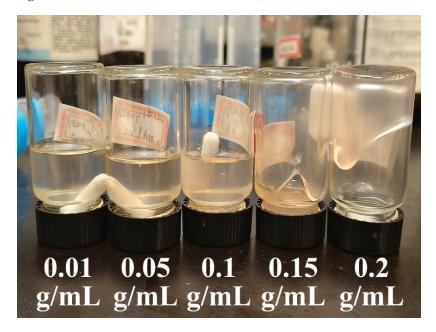
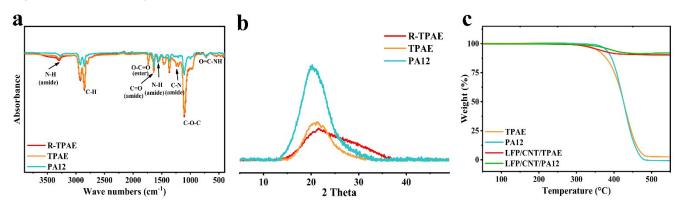
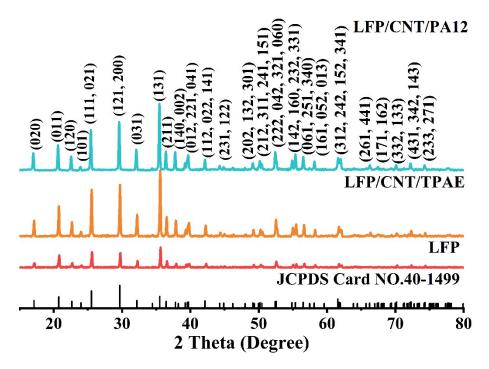




Fig S1. Photos of 0.01-0.2 g·mL⁻¹ TPAE/LiTFSI/Water (10 M) solution.

Fig S2. (a) FTIR spectra of TPAE, PA12, and R-TPAE. (b) XRD patterns of TPAE, R-TPAE, and PA12. (c) The TGA plots of TPAE, R-TPAE, PA12, LFP/CNT/TPAE, and LFP/CNT/PA12.

 $\textbf{Fig S3}. \ \textbf{XRD patterns of LFP}, \textbf{LFP/CNT/TPAE}, \textbf{and LFP/CNT/PA12}.$

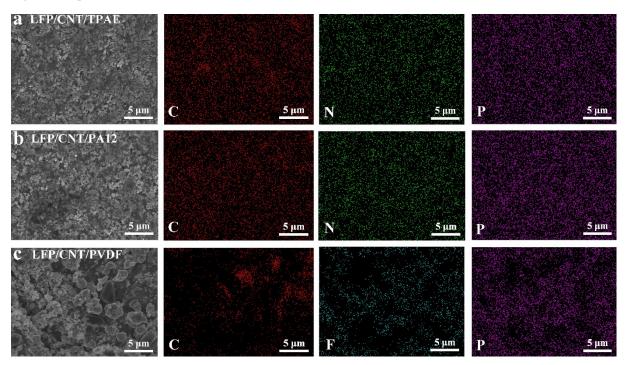
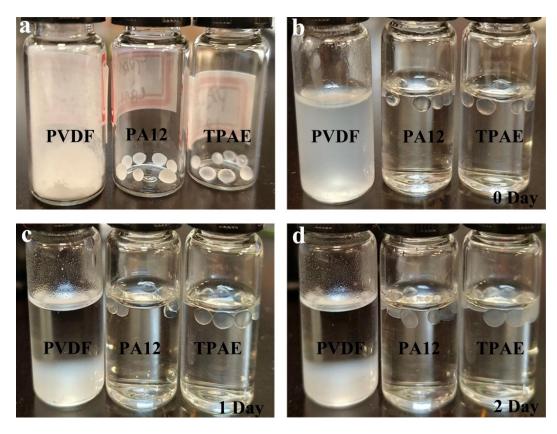



Fig S4. SEM-EDS images of (a) LFP/CNT/TPAE, (b) LFP/CNT/PA12, and (c) LFP/CNT/PVDF.

 Table S1. Test results of Mercury porosimetry.

C1	Porosity	Average pore diameter	Median pore diameter	Total pore volume	Total pore area
Sample name	(%)	(4V/A/nm)	(V/nm)	$(ml \cdot g^{-1})$	$(m^2 \cdot g^{-1})$
LFP/CNT/TPAE-3 mm	46.0204	108.81	126.64	0.3264	11.999
LFP/CNT/TPAE-200 μm	56.2402	148.65	2,958.36	0.6174	16.615
LFP/CNT/TPAE-100 μm	64.9344	347.83	76,790.13	0.8857	10.185
LFP/CNT/TPAE-20 μm	71.5304	499.22	50,765.03	1.1122	8.911
LFP/CNT/PA12-20 μm	72.8071	403.13	30,388.68	1.1491	11.401

Fig S5. (a) Photos of TPAE particles, PA12 particles, and PVDF powder. Photos of the TPAE 0-day (b), 1-day (c), and 2-day (d) immersion in the electrolyte of 1 M LiPF₆ dissolved in EC/DMC/EMC (1:1:1 by volume) at 25°C.

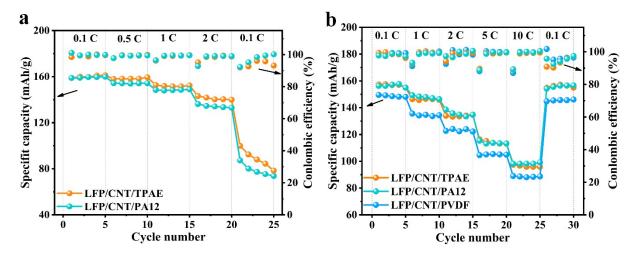


Fig S6. (a) Rate capabilities of LFP/CNT/TPAE and LFP/CNT/PA12 with a mass loading of $\sim 30.0 \text{ mg} \cdot \text{cm}^{-2}$. (b) Rate capability of LFP/CNT/TPAE, LFP/CNT/PA12, and LFP/CNT/PVDF electrodes with a mass loading of $\sim 2.0 \text{ mg} \cdot \text{cm}^{-2}$ ($\sim 20 \text{ }\mu\text{m}$).

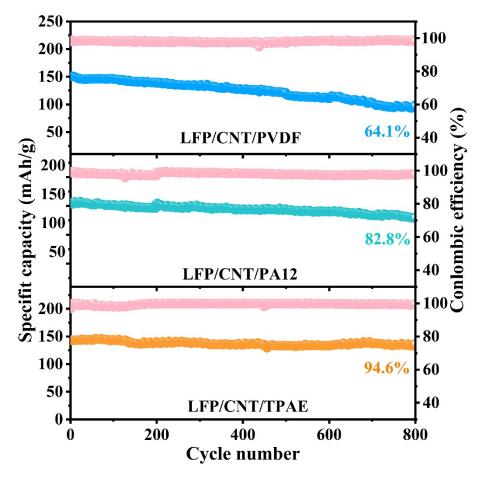


Fig S7. Cycling performance of LFP/CNT/TPAE, LFP/CNT/PA12, and LFP/CNT/PVDF cells with a mass loading of 2.0 mg \cdot cm⁻² (\sim 20 μ m) at 1.0 C.

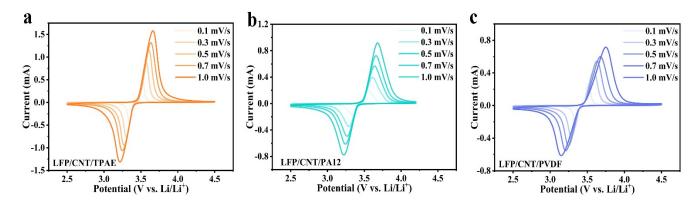


Fig S8. CV curves of (a) LFP/CNT/TPAE, (b) LFP/CNT/PA12, and (c) LFP/CNT/PVDF electrode.

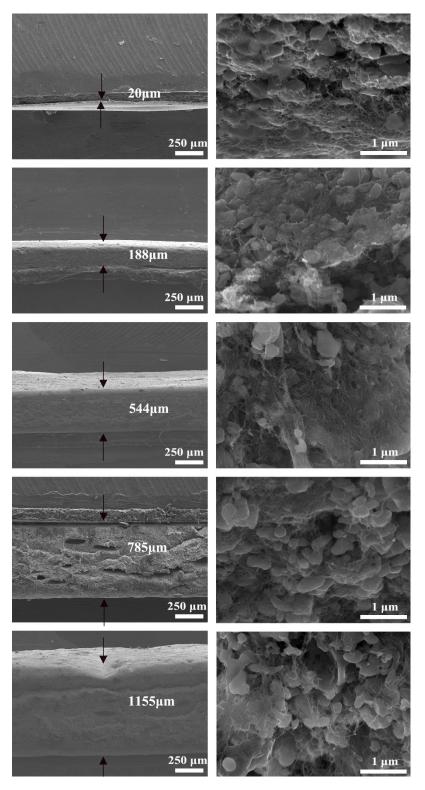


Fig S9. The cross-section images of LFP/CNT/TPAE electrodes with different thicknesses in the range of 20-1155 μm (left) and the corresponding microstructure of the cross-section (right).

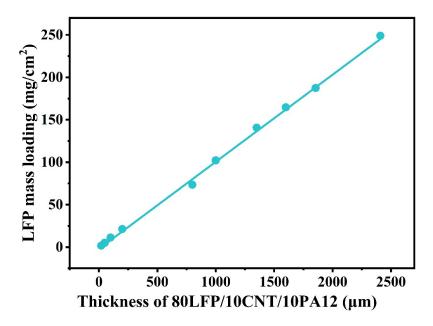
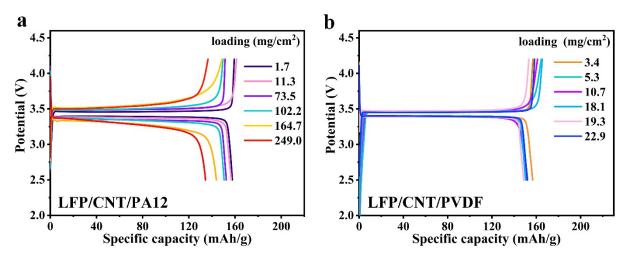
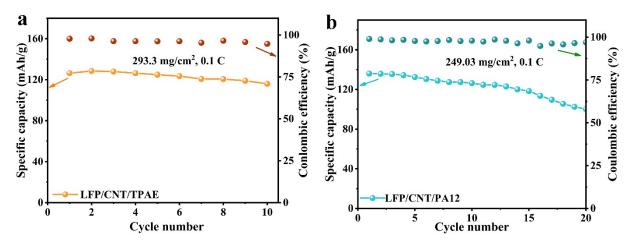




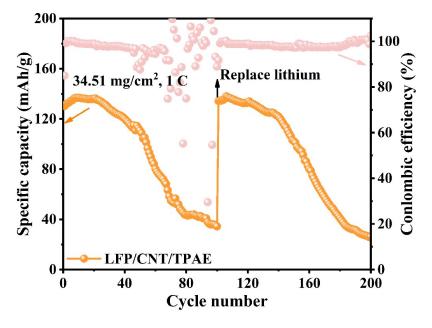
Fig S10. LFP mass loading in LFP/CNT/PA12 as a function of thickness.

Fig S11. Charge/discharge profiles of (a) LFP/CNT/PA12 and (b) LFP/CNT/PVDF were collected at 0.1 C with different LFP mass loadings.

Fig S12. Cycling performance of (a) LFP/CNT/TPAE with the mass loading of 293.3 mg·cm⁻² and (b) LFP/CNT/PA12 with the mass loading of 249.0 mg·cm⁻² at 0.1 C.

Table S2. Areal capacity comparison of the water-based thick electrodes for LFP electrodes from literature and this work.

E141	Mass loadings	Specific capacity	Max. areal capacity	Ref
Electrode composition	(mg·cm ⁻²)	(mAh·g-1)	(mAh·cm ⁻²)	
LMO/SuperC65/PL-CMC	20.3	113.0	2.3	38
NCM811/CNT/XG-KG	217.7	145.6	31.7	39
LiCoO ₂ /3C-binder	86.0	141.0	12.1	40
LiMn ₂ O ₄ /SWCNT	190.0	105.3	20.0	41
LMO/super-P/CMC-Li	70.0	100.0	7.0	42
LFP/CNT/TPAE	293.3	123.5	36.2	This wo
LFP/CNT/PA12	249.0	136.0	33.9	This wo


a₂₀₀ C \mathbf{b}_{200} Specific capacity (mAh/g) Conlombic efficiency (%) Specifit capacity (mAh/g) 00 001 05 051 Specifit capacity (mAh/g) ading (mg/cm²)

1.8

5.9

10.9 loading (mg/cn loading (mg/cm -20.4 -34.5 -11.0 - 8.8 - 10.7 21.1 LFP/CNT/PA12 38.2 20 20

Fig S13. Cycling performance of (a) LFP/CNT/TPAE, (b) LFP/CNT/PA12, and (c) LFP/CNT/PVDF with different areal loading collected at 1.0 C.

Fig S14. Cycle performance at 1.0 C of LFP/CNT/TPAE with a new Li metal anode at an LFP areal mass loading of 34.5 mg·cm⁻².

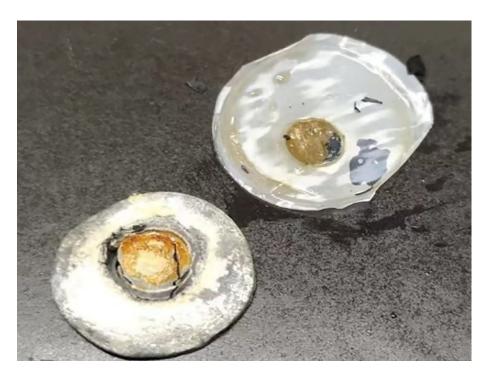


Fig S15. Optical photographs of Li metal anode after 100 cycles of LFP/CNT/TPAE//Li cell with LFP areal mass loading of 34.5 mg·cm⁻².

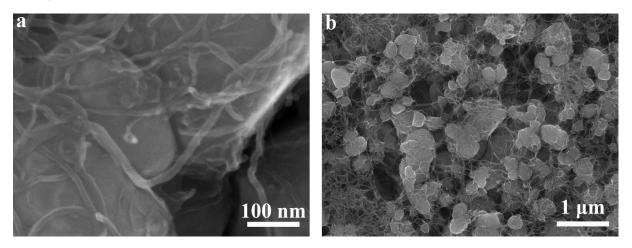
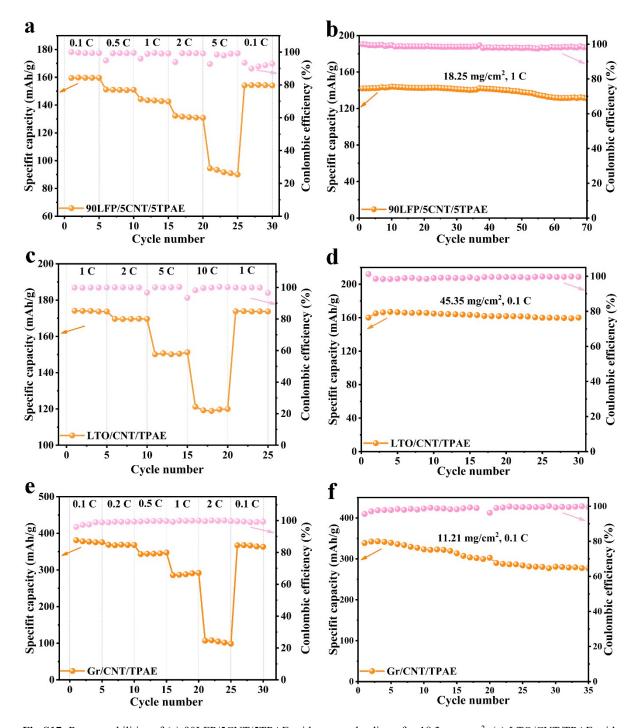
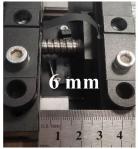




Fig S16. SEM images of 90LFP/5CNT/5TPAE.

Fig S17. Rate capabilities of (a) 90LFP/5CNT/5TPAE with a mass loading of ~ 18.3 mg·cm⁻², (c) LTO/CNT/TPAE with a mass loading of ~ 4.15 mg·cm⁻², and (e) Gr/CNT/TPAE with a mass loading of ~ 2.29 mg·cm⁻². Cycle performance of (b) 90LFP/5CNT/5TPAE, (d) LTO/CNT/TPAE, and (f) Gr/CNT/TPAE.



Fig S18. Corresponding digital photos of LFP/CNT/PA bending from a flat state to various bending radius of 6, 5, and 3 mm.

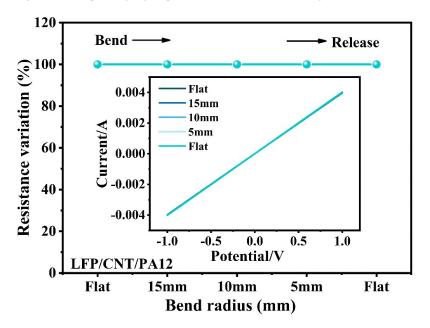


Fig S19. The LSV curves of LFP/CNT/PA12 when bent from a flat state to various bend radius and released to a flat state.

Equations:

Equation S1. The diffusion coefficients D of Li⁺ were calculated according to the following equation:

$$D_{Li} = R^2 T^2 / 2A^2 n^4 F^4 C_0^2 \sigma^2$$

Where D_{Li} is the Li⁺ diffusion coefficient in LFP electrode (cm²·s⁻¹), R is the gas constant (8.314 J·mol·K⁻¹), T is the absolute temperature (298 K), A is the surface area of the electrode (0.19625 cm²), n is the number of electrons transferred per molecule during the electrochemical reaction (for LFP, n = 1), F is the Faraday constant (96485 C·mol⁻¹), C_{θ} is the molar concentration of Li⁺ in LFP (2.28×10⁻² mol·cm⁻³), and σ is the Warburg factor associated with Z'.

Equation S2. Randles-Sevcik formule

$$I_p = 2.69 \times 10^5 n^{3/2} A D_{Li}^{1/2} C_0 v^{1/2}$$

where I_p is the peak current (A), n is the number of electrons transferred per molecule during the electrochemical reaction (for LFP, n = 1), A is the active surface area of the electrode (cm²), C_0 is the molar concentration of Li⁺ in LFP (2.28 × 10⁻² mol·cm⁻³), D_{Li} is the Li⁺ diffusion coefficient in LFP (cm²·s⁻¹), and v is the scanning rate (V·s⁻¹). According to this formula, D_{Li} is proportional to $I_p^{-1/2}$.