Gradient structured all-organic dielectrics by electrospinning for

Enhanced energy storage performance

Yuan Liu^a, Hang Luo^a*, Haiyan Chen^b, Minxi Li^a, Yuting Wan^a, Bo Peng^a, Xiaona

Li^a, Dou Zhang^a*

a.State Key Laboratory of Powder Metallurgy, Central South University, Changsha

410083, China

b.College of Energy and Power Engineering, Changsha University of Science and

Technology, Changsha, Hunan 410114, China

*Corresponding author

mail: hangluo@csu.edu.cn (Hang Luo)

dzhang@csu.edu.cn (Dou Zhang)

Topological configurations	v (ml/h)	The relationship between f_1 and d	
Homogeneous structure	$v_1 = 0.6 \ (0 < t \le T)$ $v_2 = 0.4 \ (0 < t \le T)$	$f_1 = 60\% (0 < d \le 1)$	
Trilayer structure	$v_1=1:v_2=0 \ (0 < t \le 3T/5)$	$f_1=100\% \ (0 \le d \le 1/3)$	
	$v_1 = 0; v_2 = 1 \ (0 < t \le 2T/5)$	$f_1=0 (1/3 \le 2/3)$ $f_1=100\% (2/3 \le 1)$	
Linear gradient structure	v₁=1-0.8t/T (0 <t≤t)< td=""><td>$f_1=1-1.6d \ (0 \le d \le 0.5)$</td></t≤t)<>	$f_1=1-1.6d \ (0 \le d \le 0.5)$	
	v₂=0.8t/T (0 <t≤t)< td=""><td>$f_1=1.6d-0.6 \ (0.5 \le d \le 1)$</td></t≤t)<>	$f_1=1.6d-0.6 \ (0.5 \le d \le 1)$	
Nonlinear gradient structure	v ₁ =1.2-1.2t/T (0 <t≤t)< td=""><td>$f_1 = 3 - \frac{6}{\sqrt{9 - 10d}} (0 \le d \le 0.5)$</td></t≤t)<>	$f_1 = 3 - \frac{6}{\sqrt{9 - 10d}} (0 \le d \le 0.5)$	
Nommear gradient structure	v ₂ =0.8t/T (0 <t≤t)< td=""><td>$f_1 = 3 - \frac{6}{\sqrt{10d - 1}} (0.5 < d \le 1)$</td></t≤t)<>	$f_1 = 3 - \frac{6}{\sqrt{10d - 1}} (0.5 < d \le 1)$	
Rev-nonlinear gradient structure	v ₁ =1.2t/T (0 <t≤t)< td=""><td>$f_1 = 3 - \frac{6}{\sqrt{10d + 4}} (0 \le d \le 0.5)$</td></t≤t)<>	$f_1 = 3 - \frac{6}{\sqrt{10d + 4}} (0 \le d \le 0.5)$	
	v₂=0.8-0.8t/T (0 <t≤t)< td=""><td>$f_1 = 3 - \frac{6}{\sqrt{14 - 10d}} (0.5 < d \le 1)$</td></t≤t)<>	$f_1 = 3 - \frac{6}{\sqrt{14 - 10d}} (0.5 < d \le 1)$	

Table S1. The solution flow rates (v) and the corresponding distribution functions of PVDF volume fraction (f_1) in all-organic composites with different topological structures

* The subscripts of 1 and 2 represent PVDF and P(VDF-TrFE-CTFE), respectively.

Figure S1. Photographs of composites with different topological structures that have been

sputtered by gold electrodes

mapping of C,F,CI along the out-of-plane of linear gradient structured all-organic composite

without hot pressing by electrospinning

Figure S3. (a) Picture of transparent all-organic linear gradient structured composite obtained by hot-pressing; SEM images of composites cross-sections with different topological structures: (b) homogeneous structure, (c) trilayer structure, (d) linear gradient structure, (e) nonlinear gradient structure, (f) rev-nonlinear gradient structure

T _{m1} (°C)	T _{m2} (°C)	$\Delta T_{ml}(K)$	$\Delta T_{m2}(K)$	$\bigtriangleup H_{m1}(J/g)$	$\bigtriangleup H_{m2}(J/g)$	χ ₁ (%)	χ2(%)
167.99	122.99	441.25	396.14	24.94206	11.22575	39.78	10.69
167.89	124.89	440.65	398.04	23.06965	10.17609	36.79	9.69
166.89	123.89	440.05	397.04	23.21318	10.58457	37.02	10.08
167.86	125.86	441.05	399.01	23.49802	10.09086	37.48	9.61
168.86	124.86	442.45	398.01	23.68177	10.67103	37.77	10.16

Table S2. The thermal properties and crystallinity of all-organic composites with different

topological structures

* The subscripts of 1 and 2 represent PVDF and P(VDF-TrFE-CTFE), respectively.

Figure S4. Crystallinity of P(VDF-TrFE-CTFE) and PVDF in polymer films with different

topological structures

Figure S5. The fractal dimension of electric tree branches of composites with different topological

structures

	Homogeneous	Trilayer s	Linear gradient	Nonlinear gradient	Rev-nonlinear gradient
Dielectric constant @1 kHz	19.00	20.43	19.59	19.61	19.74
Dielectric loss @1 kHz	0.0396	0.0378	0.0385	0.0402	0.0415
D _{max} @390 kV/mm	7.34	7.97	7.62	7.67	7.79
D _r @390 kV/mm	1.83	1.14	0.96	1.15	1.30
D_{max} - D_r	5.51	6.83	6.66	6.52	6.49
E _{max}	390	410	540	420	400
E _b	366.5	376.5	477.8	395.2	354.2
β	13.1	13.5	10.6	13.3	4.8
Young's modulus	1.05	1.12	1.30	1.20	0.95
U_{dis}	8.12	11.47	17.75	11.51	10.26
η	57.67	72.26	70.26	70.85	66.82

Table S3. Table of properties summary of all-organic composites with different topological

structures