Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supping Information

Lightweight, Elastic and Conductive Pure PEDOT:PSS

Foam for Dual-Mode Sensing

Haibin Li^a, Rubai Luo^{b,c*}, Jingbo Hu^b, Shisheng Zhou^{b,c}, Xing Zhou^b, and Bin Du^{b,c}
^aSchool of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China
^bFaculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
^cShaanxi Provincial Key Laboratory of printing and Packaging Engineering, Xi'an University of Technology, Xi'an 710048, China
^eShaanxi Provincial Key Laboratory of printing and Packaging Engineering, Xi'an University of Technology, Xi'an 710048, China
^eCorresponding author:
E-mail: luorubai@xaut.edu.cn

Fig. S1. The state of foam and non-foam PEDOT:PSS hydrogels in water.

Fig. S2. Normal foamed PEDOT:PSS hydrogel (left) and over-foamed PEDOT:PSS hydrogel (right).

Fig.S3. SBLPP foam on the setose asparagus.

Fig.S4. Photograph of (a) SBPP foam, (b) BLPP foam, (c) SLPP foam, (d) SBLPP

foam.

Fig. S5. SEM images of the axial cross-sections of (a) SLPP foam and (b) SBLPP foam.

Fig. S6. XPS spectra of BLPP and SBLPP foams.

Fig. S7. Photographs of the loading-unloading process of the SBPP foam

Fig. S8. Photographs of the loading-unloading process of the BLPP foam

Fig. S9. Photographs of the loading-unloading process of the SBLPP foam

Fig. S10. Cyclic compressive stress-strain curves, height retention, maximum stress and energy loss coefficient of (a, a_1) SBPP foam, (b, b_1) BLPP foam, (c, c_1) SLPP foam, (d, d_1) SBLPP foam.

Table S1. Comparison of foam porosity

Sample	Porosity (%)			
BLPP foam	98.3			
SBPP foam	98.6			
SLPP foam	99			
SBLPP foam	99.25			

Table S2. Comparison of the sensing performance of SBLPP sensor withpreviously reported pressure sensors.

Pressure sensor	Sensitivity (kPa-	Sensing range	Reference
	1)	(kPa)	
SBLPP	171.23	3.5	This
			work
PEDOT:PSS/PDMS	85	10	[1]
PEDOT:PSS/CNF	5	1	[2]
AgNW/PEDOT:PSS/PI	31	2.75	[3]
PEDOT:PSS/CNT@melamin	3.35	100	[4]
e			
PDMS@MWCNTS/PP	16.6	35	[5]
PEDOT/PSS/CNF	0.015	97	[6]
PEDOT:PSS/NFC	190	0.3	[7]

CNT/PEDOT:PSS/NFC	4.48	4	[8]
PEDOT:PSS/CNT	1.97	100	[9]
PEDOT:PSS/CNT	25.7	20	[10]
MXene/PEDOT:PSS	26.65	11	[11]
PEDOT:PSS/PI	5.4	16	[12]
SEBS/PEDOT:PSS/melamine	6.4	30	[13]

PDMS: polydimethylsiloxane; PEDOT:PSS: poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate); CNT: Carbon nanotube; MWCNT: multi-walled carbon nanotube; CNF: Cellulose nanofibers; PI: polyimide; NFC: carboxymethylated.

Structure	Method	Matrix	Filler	Conductivity	Density	Porosity	Max	Seebeck	Ref.
				(S/m)	(mg/cm ³)	(%)	Stress	factor	
							(kPa)	(µV/k)	
Foam	SA+DFD	PEDOT:PS	-	0.06	7.2	99.25	1.68	18.7	This
		S							work
	SCD	PEDOT:PSS	-	0.1	138	98.87	/	1	[14]
	SCD	PEDOT:PSS	-	235	33.6	97.5	/	13	[15]
	SCD	PEDOT:PSS	MWCNTs	2.5	54	94.5	/	1	[16]

Table S3 Properties of PEDOT:PSS foams prepared by different processes

DFD	PEDOT:PSS	PI	3.5	/	/	1.85	/	[3]
FD	PEDOT:PSS	CNF	2.12*10-4	18	/	14	/	[2]
DFD	PEDOT:PSS	PDMS	0.04	/	0	100	/	[17]
FD	PEDOT:PSS	-	0.001	1225	89.2	/	/	[18]
DFD	PEDOT:PSS	-	0.11	/	95	3.18	/	[1]
FD	PEDOT:PSS	-	3	/	/	/	10	[19]
FD	PEDOT:PSS	-	2.2	/	/	/	/	[20]
FD	PEDOT:PSS	MWCNTs	571	121.5	80	/	/	[21]
FD	PEDOT:PSS	PDMS	6	/	0	1.2	/	[22]
FD	PEDOT:PSS	NFC	500	10.8	/	/	20	[23]

SA: self-assembly; SCD: supercritical CO₂ drying; DFD: Directional freeze drying; FD: Freeze drying; PI: polyimide; CNF: Cellulose nanofibers; NFC: carboxymethylated; PDMS: polydimethylsiloxane; /: Does not have this functionality or not tested.

Reference

- [1] M. Solazzo and M. G. Monaghan, Biomater. Sci, 2021, 9, 4317.
- [2] Y. Wu, Z. Yan, T. Wang, J. Wang, T. Wang, Z. Hu, Y. Ao, Y. Wang and M. Li, ACS Appl. Polym. Mater, 2023, 5, 3938-3948.
- [3] J. Wang, X. Yue, X. Li, J. Dong, Q. Zhang and X. Zhao, ACS Appl. Polym. Mater,

2022, 4, 3205-3216.

- [4] X. Gao, F. Gao, J. Liu, Y. Li, P. Wan, Z. Yu and X. Li, ACS Appl. Polym. Mater, 2022, 14, 43783-43791.
- [5] H. Li, R. Luo, J. Hu, K. Yang, B. Du, S. Zhou and X. Zhou, J. Mater. Sci. Technol, 2024, 182, 22-32.
- [6] J. Zhou and Y. L. Heish. ACS Appl. Mater. Interfaces, 2018,10, 27902-27910.
- [7] S. Han, N. U. H. Alvi, L. Granlöf, H. Granberg, M. Berggren, S. Fabiano and X. Crispin, Adv. Sci. 2019, 6, 1802128.
- [8] F. Gao, P. Min, Q. Ma, T. Zhang, Z. Yu, J. Shang, R. Li and X. Li, Adv. Funct. Mater, 2023, 34, 2309553.
- [9] F. Gao, P. Min, X. Gao, C. Li, T. Zhang, Z. Yu and X. Li, J. Mater. Chem. A, 2022, 10, 18256.
- [10] J. Liu, J. Garcia, L. M. Leahy, R. Song, D. Mullarkey, B. Fei, A. Dervan, I. V. Shvets, P. Stamenov, W. Wang, F. J. O'Brien, J. N. Coleman and V. Nicolosi, Adv. Funct. Mater, 2023, 33, 2214196.
- [11] S. Zhang, T. Tu, T. Li, Y. Cai, Z. Wang, Y. Zhou, D. Wang, L. Fang, X. Ye and B. Liang, ACS Appl. Mater. Interfaces, 2022,14, 23877-23887.
- [12] X. Zhao, W. Wang, Z. Wang, J. Wang, T. Huang, J. Dong and Q. Zhang, Chem. Eng. J, 2022, 395, 125115.
- [13] J. Oh, J. Kim, K. T. Park, K. Jo, L. Lee, H. Kim and J. Son, Nanoscale, 2018, 0, 1-10.
- [14] X. Zhang, D. Chang, J. Liu and Y. Luo, J. Mater. Chem, 2010, 20, 5080-5085.
- [15] N. Yanagishima, S. Kanehashi, H. Saito, K. Ogino and T. Shimomura, Polymer, 2020, 206, 122912.
- [16] X. Zhang, J. Liu, B. Xu, Y. Su and Y. Luo, Carbon, 2011, 49, 1884-1893.
- [17] M. Solazzo, L. Hartzell, C. O'Farrell and M. G. Monaghan, ACS Appl. Mater. Interfaces, 2022, 14,19265-19277.
- [18] X. Zhang, C. Li and Y. Luo, Langmuir, 2011, 27(5), 1915-1923.
- [19] X. Xin, J. Xu, N. Gao, Z. Xue, W. Zhang, J. Xu and S. Chen, J Appl Polym Sci, 2021, 138, e49774.

- [20] J. Zhang, X. Fan, X. Meng, J. Zhou, M. Wang, S. Chen, Y. Gao, Y. Chen, C. W. Bielawski and J. Geng, ACS Nano, 2021, 15, 8870-8882.
- [21] C. Chang-Jian, E. Cho, K. Lee, J. Huang, P. Chen, B. Ho and Y. Hsiao, Compos. Part. B-Eng, 2018, 136, 46-54.
- [22] A. Novikon, J. Goding, C. Chapman, E. Cuttaz and R. A. Green, APL. Mater, 2020, 8, 101105.
- [23] S. Han, F. Jiao, Z. U. Khan, J. Edberg, S. Fabiano and X. Crispin, Adv. Funct. Mater, 2017, 1703549.