Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Curvature-Switched Activity of Carbon Nanotube-Supported Single Atom Catalysts for Hydrogen Evolution Reaction

Wenshan Zhao, Shenyu Shen, YiRu Zhao, Tiantian Wu*, Shujiang Ding, Yaqiong Su*

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China

*Corresponding author: Tiantian Wu (tianwu@xjtu.edu.cn);

Yaqiong Su (yqsu1989@xjtu.edu.cn)

Fig. S1 Optimized geometries of H adsorption on TMN₄@C (TM=Mo, Rh, Fe, Cr, Co, Zn, Mn, Cu, Ni, Pd). The lattice parameters were set to be $12 \times 12 \times 15$ Å³.

g. S2 Optimized geometries of H adsorption on TMN₄@CNTs (n, n) (n=5, 10) (TM=Mo, Rh, Fe, Cr, Co, Zn, Mn, Cu, Ni, Pd). The lattice parameters were set to be $15 \times 15 \times 10$ Å³ for CNTs (5, 5) and $23 \times 23 \times 10$ Å³ for CNTs (10, 10).

Fig. S3 Optimized configurations of RhN_4 @CNTs (n, n) (n=5-10) labeled with thelatticeparameters.

Table S1 The binding energies (E_b) of TMs on graphene, the difference between binding energy and cohesion energy (E_{coh}) of TMs, Gibbs free energies for H* adsorption (ΔG_{H^*}) on TMN₄@C , and DFT-calculated entropies (S) for H* adsorption on TMN₄@C.

	E _b (eV)	E _b -E _{coh} (eV)	∆G _{H*} (eV)	S (J/K/mol)
MoN ₄ @C	-4.981	0.208	-0.614	6.979
RhN ₄ @C	-6.476	-1.654	-0.041	4.374
FeN4@C	-5.614	-1.509	0.043	3.760
CrN4@C	-5.733	-1.293	0.189	7.434
CoN4@C	-6.422	-3.278	0.260	2.379
ZnN4@C	-2.448	-1.890	0.462	6.652
MnN ₄ @C	-5.552	-2.485	0.467	3.739
CuN ₄ @C	-3.901	-0.636	1.235	6.644
NiN ₄ @C	-6.744	-2.320	1.620	4.013
PdN ₄ @C	-4.507	-1.683	1.807	6.714

Table S2 The binding energies (E_b) of TMs on CNTs (n, n) (n=5, 10), the difference between binding energy and cohesion energy (E_{coh}) of TMs, Gibbs free energies for H* adsorption (ΔG_{H*}) on TMN₄@CNTs (n, n) (n=5, 10), and DFT-calculated entropies (S) for H* adsorption on TMN₄@CNTs (n, n) (n=5-10).

	E _b (eV)	E _b -E _{coh} (eV)	$\Delta G_{H^{\star}}(eV)$	S (J/K/mol)
MoN ₄ @CNT (5, 5)	-5.365	-0.176	-0.195	11.123
RhN ₄ @CNT (5, 5)	-5.690	-0.868	0.254	3.359
FeN4@C (5, 5)	-5.478	-1.373	0.340	3.256
CrN ₄ @C (5, 5)	-5.257	-0.817	0.317	9.615
CoN4@C (5, 5)	-5.946	-2.802	0.436	2.378
ZnN ₄ @C (5, 5)	-1.802	-1.244	0.742	7.167
MnN ₄ @C (5, 5)	-5.056	-1.989	0.601	5.208
CuN ₄ @C (5, 5)	-3.585	-0.320	1.595	7.430
NiN ₄ @C (5, 5)	-6.378	-1.954	1.757	4.125
PdN ₄ @C (5, 5)	-3.641	-0.817	1.897	6.967
MoN4@CNT (10,10)	-5.281	-0.092	-0.358	12.083
RhN4@CNT (10, 10)	-6.210	-1.388	0.005	2.816
FeN4@C (10, 10)	-6.151	-2.046	0.253	2.920
CrN ₄ @C (10, 10)	-4.777	-0.337	0.190	5.907
CoN4@C (10, 10)	-6.470	-3.326	0.249	2.136
ZnN ₄ @C (10, 10)	-2.380	-1.821	0.636	6.666
MnN ₄ @C (10, 10)	-5.542	-2.475	0.513	3.683
CuN ₄ @C (10, 10)	-3.625	-0.360	1.330	7.267
NiN ₄ @C (10, 10)	-6.868	-2.444	1.678	3.597
PdN ₄ @C (10, 10)	-4.281	-1.457	1.849	5.607

	d _{C-N}	d _{Rh-N}	٤ _d	$\Delta G_{\mathrm{H}^{\star}}$ (eV)
RhN ₄ @CNT (5,5)	1.357	1.940	-1.60	0.254
RhN4@CNT (6,6)	1.357	1.934	-1.50	0.168
RhN ₄ @CNT (7,7)	1.356	1.931	-1.43	0.104
RhN ₄ @CNT (8,8)	1.356	1.932	-1.38	0.063
RhN ₄ @CNT (9,9)	1.356	1.933	-1.37	0.031
RhN4@CNT (10,10)	1.357	1.933	-1.33	0.005
de-RhN4@CNT (5,5)	1.355	1.943	-1.50	0.134
de-RhN4@CNT (6,6)	1.355	1.942	-1.51	0.047
de-RhN4@CNT (7,7)	1.355	1.940	-1.47	-0.002
de-RhN4@CNT (8,8)	1.355	1.940	-1.47	-0.031
de-RhN ₄ @CNT (9,9)	1.355	1.936	-1.44	-0.091
de-RhN ₄ @CNT (10,10)	1.354	1.936	-1.43	-0.102

Table S3 C-N bonding length (d_{C-N}), Rh-N bonding length (d_{Rh-N}), d-band center of Rh atom, Gibbs free energies for H* adsorption (ΔG_{H^*}).