Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting information

Supramolecular Interactions Using β -Cyclodextrin in Controlling Perovskite Solar Cell Performance

Parnian Ferdowsi,^a Sun-Ju Kim,^b Thanh-Danh Nguyen,^b Ji-Youn Seo,^b Jun-Ho Yum,^a* and Kevin Sivula^a ^aLaboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland ^bDepartment of Nano Fusion Technology, Pusan National University, 46241 Busan, Republic of Korea Email: junho.yum@epfl.ch

Table of Contents

Figure S1. XRD pattern on ITO substrates covered by a SAM layer (star marks the XRD peak of PbI ₂), (b) steady-state PL spectra (ITO/ MeO-2PACz/Perovskite), and (c) absorption spectra (Glass/Perovskite) of control (ctrl) and treated sample by various concentrations of β -CD
Figure S2. Top view SEM images of control (ctrl) and treated perovskite films with varying concentrations of β -CD. Red circles represent Pbl ₂ crystals
Figure S3. Cross section SEM images of control (left) and treated sample by 0.5% of β -CD (right)3
Figure S4. Space charge-limited current (SCLC) measurements of the electron-only devices (ITO/SnO ₂ /Perovskite (W/O or W/ β-CD)/PCBM/Ag)
Figure S5. The dependence of a) J_{SC} and b) V_{OC} on the incident light intensity in case of (a) control and (b) treated sample by 0.5% of β -CD
Figure S6. a) Solid-state NMR and b) normalized solid-state NMR of control, β -CD 0.5% treated perovskite and β -CD powders (Ctrl and target refer to pristine perovskite film and β -CD-treated perovskite film, respectively)
Figure S7. Solution ¹ HNMR of a) β -CD, b) Pbl ₂ + 0.5% β -CD, c) MABr+ 0.5% β -CD, d) FAI + 0.5% β -CD, e) MABr + 0.5% β -CD-MABr, and f) FAI + 0.5% β -CD-FAI precursor solutions in DMSO-d6.
Figure S8. Solution ¹ HNMR of β -CD and treated perovskite powder (0.5% β -CD) dissolved in DMSO-d65
Figure S9. ATR-FTIR spectra of pure β -CD as powder, perovskite films without β -CD (control), and perovskite films treated by with 0.5% of β -CD and 5% of β -CD.
Figure S10. Plot of $(\alpha hv)^2$ as a function of photon energy for a) control and b) treated sample by 0.5% of β -CD before and after exposure to humidity stress
Figure S11. Top view SEM images of the control and β -CD 0.5% treated perovskite films before and after 6 hours aggressive thermal stress
Figure S12. XRD pattern of control (ctrl) and treated sample by 0.5% of β -CD on ITO substrates covered by a SAM layer (star marks the XRD peak of Pbl ₂)
Figure S13. Plot of $(\alpha hv)^2$ as a function of photon energy for a) control and b) treated sample by 0.5% of β -CD before and after exposure to aggressive thermal stress
Figure S14. Images of control (ctrl) and treated sample by 0.5% of β -CD on ITO substrates after 5 months at a controlled environment with a temperature range of 18-20°C and humidity between 40 to 45%.
Figure S15. Long-term stability of control and β -CD 0.5% treated devices under constant 1-sun illumination without encapsulation, maintaining temperatures between 50 to 60°C
Figure S16. a) Chemical structure of Maltose and b) absorption spectra of Maltose 0.5% treated films under humidity environment (85% RH) at 27°C. Then inset shows top-view SEM image of film after 176-hour humidity exposure. c) Plot of $(\alpha hv)^2$ as a function of photon energy
Figure S17. a) Absorption spectra of Maltose 0.5% treated films before and after exposure to aggressive thermal stress for 3 hours at 140°C, b) plot of $(\alpha hv)^2$ as a function of photon energy c) XRD pattern of control (ctrl) and treated sample by 0.5% of β -CD and Maltose on ITO substrates covered by a SAM layer, and d) top view SEM images of the Maltose 0.5% treated perovskite films before and after 6 hours aggressive thermal stress

Figure S1. XRD pattern on ITO substrates covered by a SAM layer (star marks the XRD peak of PbI₂), (b) steady-state PL spectra (ITO/ MeO-2PACz/Perovskite), and (c) absorption spectra (Glass/Perovskite) of control (ctrl) and treated sample by various concentrations of β -CD.

Figure S2. Top view SEM images of control (ctrl) and treated perovskite films with varying concentrations of β -CD. Red circles represent Pbl₂ crystals.

Figure S3. Cross section SEM images of control (left) and treated sample by 0.5% of β -CD (right).

Figure S4. Space charge-limited current (SCLC) measurements of the electron-only devices (ITO/SnO₂/Perovskite (W/O or W/ β -CD)/PCBM/Ag).

Figure S5. The dependence of a) J_{sc} and b) V_{oc} on the incident light intensity in case of (a) control and (b) treated sample by 0.5% of β -CD.

Figure S6. a) Solid-state NMR and b) normalized solid-state NMR of control, β -CD 0.5% treated perovskite and β -CD powders (Ctrl and target refer to pristine perovskite film and β -CD-treated perovskite film, respectively).

Figure S7. Solution ¹HNMR of a) β -CD, b) Pbl₂ + 0.5% β -CD, c) MABr+ 0.5% β -CD, d) FAI + 0.5% β -CD, e) MABr + 0.5% β -CD-MABr, and f) FAI + 0.5% β -CD-FAI precursor solutions in DMSO-d6.

Figure S8. Solution ¹HNMR of β -CD and treated perovskite powder (0.5% β -CD) dissolved in DMSOd6.

Figure S9. ATR-FTIR spectra of pure β -CD as powder, perovskite films without β -CD (control), and perovskite films treated by with 0.5% of β -CD and 5% of β -CD.

Figure S10. Plot of $(\alpha hv)^2$ as a function of photon energy for a) control and b) treated sample by 0.5% of β -CD before and after exposure to humidity stress.

Figure S11. Top view SEM images of the control and β -CD 0.5% treated perovskite films before and after 6 hours aggressive thermal stress.

Figure S12. XRD pattern of control (ctrl) and treated sample by 0.5% of β -CD on ITO substrates covered by a SAM layer (star marks the XRD peak of Pbl₂).

Figure S13. Plot of $(\alpha hv)^2$ as a function of photon energy for a) control and b) treated sample by 0.5% of β -CD before and after exposure to aggressive thermal stress.

Figure S14. Images of control (ctrl) and treated sample by 0.5% of β -CD on ITO substrates after 5 months at a controlled environment with a temperature range of 18-20°C and humidity between 40 to 45%.

Figure S15. Long-term stability of control and β -CD 0.5% treated devices under constant 1-sun illumination without encapsulation, maintaining temperatures between 50 to 60°C.

Figure S16. a) Chemical structure of Maltose and b) absorption spectra of Maltose 0.5% treated films under humidity environment (85% RH) at 27°C. Then inset shows top-view SEM image of film after 176-hour humidity exposure. c) Plot of $(\alpha hv)^2$ as a function of photon energy.

Figure S17. a) Absorption spectra of Maltose 0.5% treated films before and after exposure to aggressive thermal stress for 3 hours at 140°C, b) plot of $(\alpha hv)^2$ as a function of photon energy c) XRD pattern of control (ctrl) and treated sample by 0.5% of β -CD and Maltose on ITO substrates covered by a SAM layer, and d) top view SEM images of the Maltose 0.5% treated perovskite films before and after 6 hours aggressive thermal stress.

 Table S1.
 Average value of trap-filled limit voltage and trap-state density from SCLC.

Sample	Average V _{TFL} (V)	Average N _{trap} (cm ⁻³)
β-CD 0.5%	0.353	1.14358E+16
Control	0.455	1.47193E+16