Superhydrophilic covalent organic frameworks accelerate photocatalytic

production of hydrogen peroxide through proton channels

Xiaojuan Bai*^{a,b}, Linlong Guo^b, Tianqi Jia^b, Zhuofeng Hu*^c

^aKey Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

^bBeijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, China

^cSchool of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yatsen University, Guangzhou, China

E-mail: baixiaojuan@bucea.edu.cn, heixia.1986@163.com

huzhf8@mail.sysu.edu.cn

S1. Experimental procedures

Chemicals and materials. Melamine, potassium iodide, potassium hydrogen phthalate, p-benzoquinone, disodium EDTA, tert-butanol, anhydrous ethanol, and hydrogen peroxide were purchased from Sinopharm Chemical Reagent Co, Ltd. 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT), 1,4–Phthalaldehyde, terephthalaldehyde (PDA), tetrakis(4-aminophenyl)methane (TAPM), acetic acid, 1,3,5-trimethylbenzene, methanol, acetonitrile, dichloromethane and 1,2-dichlorobenzene were purchased from Shanghai Macklin Biochemical Co., Ltd. 2,5-dihydroxyterephthalaldehyde (DHA), ciprofloxacin, sulfamethoxazole, pyruvic acid, butanol and N-hexane were purchased from Aladdin Chemical Reagent Co. Ltd. All reagents purchased are analytical grade or above and can be used without further purification.

Synthesis of Melem: Melem was synthesized based on previous literature with slight modifications to the previous method. The melamine powder was placed in a covered crucible, after which the crucible was placed in a muffle furnace. The temperature of the muffle furnace was increased from 25 °C to 350 °C at a ramp rate of 10 °C min⁻¹ and the muffle was kept at 350 °C and held for 2 h. After the temperature of the muffle furnace was cooled down to room temperature, the crucible was removed and the white product was obtained.

Synthesis of Melem–PDA: A certain amount of Melem (13.1 mg) and 1,4–Phthalaldehyde (PDA) (12.1 mg) were taken into a 25 mL glass beaker. Then 4 mL of 1,3,5–trimethylbenzene and 8 mL of aqueous 6 M acetic acid were added and sonicated for 20 min for uniform dispersion. The mixed solution was transferred to a polytetrafluoroethylene liner, and a series of COFs were obtained after microwave irradiation at 100 °C, 120 °C, and 150 °C for 1 h and 2 h, respectively. After cooling to room temperature, the solids were washed with a large amount of dichloromethane

 $(3 \times 30 \text{ mL})$ and methanol $(3 \times 30 \text{ mL})$ in turn. Finally, the sample COF-TAPT/PDA was dried in a vacuum oven at 100 °C for 8 h to obtain the sample Melem-PDA.

Synthesis of TAPT–PDA: A certain amount of TAPT (21.3 mg) and PDA (12.1 mg) were taken into a 25 mL glass beaker. Then 4 mL of 1,3,5–trimethylbenzene and 8 mL of aqueous 6 M acetic acid were added and sonicated for 20 min for uniform dispersion. The mixed solution was transferred to a polytetrafluoroethylene liner, and a series of COFs were obtained after microwave irradiation at 100 °C, 120 °C, and 150 °C for 1 h and 2 h, respectively. After cooling to room temperature, the solids were washed with a large amount of dichloromethane (3×30 mL) and methanol (3×30 mL) in turn. Finally, the sample TAPT–PDA was dried in a vacuum oven at 100 °C for 8 h to obtain the sample TAPT–PDA.

Synthesis of TAPM–PDA: A certain amount of TAPM (22.8 mg) and PDA (12.1 mg) were taken into a 25 mL glass beaker. Then 4 mL of 1,3,5–trimethylbenzene and 8 mL of aqueous 6 M acetic acid were added and sonicated for 20 min for uniform dispersion. The mixed solution was transferred to a polytetrafluoroethylene liner, and a series of COFs were obtained after microwave irradiation at 100 °C, 120 °C, and 150 °C for 1 h and 2 h, respectively. After cooling to room temperature, the solids were washed with a large amount of dichloromethane (3 × 30 mL) and methanol (3 × 30 mL) in turn. Finally, the COF–TAPM/PDA was dried in a vacuum oven at 100 °C for 8 h to obtain TAPM–PDA.

Synthesis of Melem–DHA: An amount of Melem (13.1 mg) and DHA (15.0 mg) was taken into a 25 mL glass beaker. Then 4 mL of 1,3,5–trimethylbenzene and 8 mL of aqueous 6 M acetic acid were added and sonicated for 20 min for uniform dispersion. The mixed solution was transferred to a polytetrafluoroethylene liner, and a series of COFs were obtained after microwave irradiation at 100 °C, 120 °C, and 150 °C for 1 h and 2 h, respectively. After cooling to room temperature, the solids were washed with a large amount of dichloromethane (3 \times 30 ml) and methanol (3 \times 30 ml) in turn.

Finally, the sample Melem–DHA was dried in a vacuum oven at 100 °C for 8 h to obtain the sample Melem–DHA.

Synthesis of TAPT–DHA: A certain amount of TAPT (13.1 mg) and DHA (15.0 mg) were taken into a 25 mL glass beaker. Then 4 mL of 1,3,5–trimethylbenzene and 8 mL of aqueous 6 M acetic acid were added and sonicated for 20 min for uniform dispersion. The mixed solution was transferred to a polytetrafluoroethylene liner, and a series of COFs were obtained after microwave irradiation at 100 °C, 120 °C, and 150 °C for 1 h and 2 h, respectively. After cooling to room temperature, the solids were washed with a large amount of dichloromethane (3×30 mL) and methanol (3×30 mL) in turn. Finally, the samples were dried in a vacuum oven at 100 °C for 8 h to obtain the sample TAPT–DHA.

Synthesis of TAPM–DHA: A certain amount of TAPM (22.8 mg) and DHA (15.0 mg) were taken into a 25 mL glass beaker. Then 4 mL of 1,3,5–trimethylbenzene and 8 mL of aqueous 6 M acetic acid were added and sonicated for 20 min for uniform dispersion. The mixed solution was transferred to a polytetrafluoroethylene liner, and a series of COFs were obtained after microwave irradiation at 100 °C, 120 °C, and 150 °C for 1 h and 2 h, respectively. After cooling to room temperature, the solids were washed with a large amount of dichloromethane (3×30 mL) and methanol (3×30 mL) in turn. Finally, the samples were dried in a vacuum oven at 100 °C for 8 h to obtain the sample TAPM–DHA.

S2. Supporting Figures and Tables

Different COFs material precursors (Melem, TAPT, TAPM, PDA, DHA) were selected for microwave synthesis under different conditions (temperature for 100 °C, 120 °C, 150 °C, time for 1 h, 2 h), and the synthesized routes are shown in **Figure S1** below, and a total of 36 samples were synthesized from A1 labeling to F6, respectively, with the specific precursors and conditions as shown in **Table S1** and the photocatalytic production of H_2O_2 was tested after the synthesis of COFs materials. As can be seen from **Figure S2** and **Figure S3**, the H_2O_2 yields of the synthesized samples under microwave treatment at 120 °C for 1 h were higher, and the TAPT–DHA series of samples had the best performance, with the highest photocatalytic H_2O_2 yield of up to 1629 µmol·h⁻¹·g⁻¹ for the highest D3 sample (TAPT–DHA).

Figure S1. Sample synthesis process.

Table S1.	Synthesis	of samples.
-----------	-----------	-------------

Commilian		Melem		TAPT		TAPM	
Samples		1 h	2 h	1 h	2 h	1 h	2 h
PDA	100 °C	A1	A2	C1	C2	E1	E2
	120 °C	A3	A4	C3	C4	E3	E4
	150 °C	A5	A6	C5	C6	E5	E6
DHA	100 °C	B1	B2	D1	D2	F1	F2
	120 °C	B3	B4	D3	D4	F3	F4
	150 °C	B5	B6	D5	D6	F5	F6

Figure S2. Comparison of photocatalytic H_2O_2 production performance of COFs samples.

Figure S3. Comparison of H_2O_2 production performance of COFs under different

synthesis conditions.

Figure S4. XRD patterns of TAPT–PDA, Q–TAPT–PDA and Q–TAPT–DHA.

Figure S5. Solid-state ¹³C CP-MAS NMR spectra of TAPT-PDA and

Q-TAPT-PDA.

Figure S6. N 1s spectrum of (a) TAPT–DHA, (b) Q–TAPT–DHA, (d) TAPT–PDA and (e) Q–TAPT–PDA. C 1s spectrum of (c) TAPT–PDA and (d) Q–TAPT–PDA.

Figure S7. N_2 adsorption and desorption curves of TAPT-PDA and Q-TAPT-PDA.

Figure S8. SEM image of (a) TAPT–PDA and (b) Q–TAPT–PDA at a scale of 5 μm. TEM image of (c) TAPT–PDA and (d) Q–TAPT–PDA at a scale of 1 μm.

Figure S9. EDX mapping images of C, N and O elements in TAPT–DHA and Q–TAPT–DHA.

Figure S10. Mott–Schottky plots of (a) TAPT–PDA, (b) TAPT–DHA, (c) Q–TAPT–PDA and (d) Q–TAPT–DHA at frequencies of 0.5, 1.0, and 1.5 kHz.

Figure S11. The energy gap of TAPT–PDA, TAPT–DHA, Q–TAPT–PDA and Q–TAPT–DHA that were estimated by the Tauc plot.

Figure S12. XPS VB spectrum of (a) TAPT–PDA, TAPT–DHA, (b) Q–TAPT–PDA and Q–TAPT–DHA.

Figure S13. PL spectra of TAPT–PDA, TAPT–DHA, Q–TAPT–PDA and Q–TAPT–DHA, with the excitation wavelength of 405 nm.

Samples	Solution	Atmosphere	Light source	H ₂ O ₂ generation rate (μmol·g ⁻¹ ·h ⁻¹)	AQY (%) (@420 nm)	Ref.
TAPD-(Me) ₂ COF	10% EtOH	O ₂	420–700 nm	97	/	[1]
sonoCOF-F2	H_2O	Air	AM 1.5	1244.44	4.8%	[2]
COF-TTA-TTTA	H_2O	O_2	>420 nm	2406	/	[3]
TAPB-PDA-OH	10% EtOH	O_2	>420 nm	2117.6	2.99%	[4]
COF-TfpBpy	H_2O	Air	420–700 nm	694.7	8.1%	[5]
CoPc-BTM-COF	10% EtOH	O ₂	>400 nm	2096	7.2% at 630 nm	[6]
DETH-COF	H ₂ O	Air	≥420 nm	1665	at 450 nm	[7]
4PE-N-S COF	H_2O	O ₂	420–700 nm	1574	/	[8]
DMCR-1NH	H_2O	Air	>420 nm	2264.5	10.2%	[9]
PyDa-COF	50% BA	O ₂	420–700 nm	1223.3	4.5%	[10]
1H–COF	10% IPA	O ₂	>420 nm	1483.3	5.4%	[11]
TpAQ-COF-12	H_2O	O_2	>420 nm	420	7.4%	[12]
Bpy-TAPT	H_2O	O ₂	>420 nm	4038	8.6%	[13]
CHF-DPDA	H_2O	O ₂	>420 nm	1725	16%	[14]
HEP-TAPT-COF	H_2O	O_2	>420 nm	1750	15.35%	[15]
TiCOF-spn	90% EtOH	O ₂	420–780 nm	489.94	/	[16]
COF-NUST-16	10% EtOH	O ₂	>420 nm	1081	5.1% at 400 nm	[17]
ZnO/COF	10% EtOH	O ₂	AM1.5	13.12% 2443 at 365 nm		[18]
TiO ₂ /BTTA	Furfuyl alcohol	O ₂	350–780 nm	740	/	[19]
TAPT-DHA	H ₂ O	Air	AM1.5	1629	6.52% 7.79% at	This work

Table S2 Comparison of recent photocatalytic performance of H_2O_2 produced by other COFs materials

					450 nm	
Q-TAPT-DHA	H ₂ O	Air	AM1.5	1547	/	This work

Figure S14. ESR spectra of \cdot OH and $^{1}O_{2}$ of TAPT–PDA, TAPT–DHA,

Q-TAPT-PDA and Q-TAPT-DHA.

Figure S15. The first order kinetic constants of SMX degradation.

Figure S16. (a) Photocatalytic degradation of CIP by TAPT-PDA, TAPT-DHA, Q-TAPT-PDA and Q-TAPT-DHA. (b) Photocatalytic self-Fenton degradation of CIP by TAPT-PDA, TAPT-DHA, Q-TAPT-PDA and Q-TAPT-DHA.

Figure S17. The first order kinetic constants of CIP degradation.

References

- C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. r. m. Roeser, C. V. Chandran, S. Borgmans, S. M. Rogge, K. Leus, *J. Am. Chem. Soc.* 2020, 142, 20107-20116.
- W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu, X. Zhou, R. Clowes, N. D. Browning, Y. Wu, J. W. Ward, J. Am. Chem. Soc. 2022, 144, 9902-9909.
- [3] F. Tan, Y. Zheng, Z. Zhou, H. Wang, X. Dong, J. Yang, Z. Ou, H. Qi, W. Liu,
 Z. Zheng, CCS Chemistry 2022, 4, 3751-3761.
- Y. Yang, J. Kang, Y. Li, J. Liang, J. Liang, L. Jiang, D. Chen, J. He, Y. Chen,
 J. Wang, *New. J. Chem.* 2022, *46*, 21605-21614.
- [5] M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. Chen, Angew. Chem. Int. Ed. 2022, 61, e202200413.
- [6] Q. Zhi, W. Liu, R. Jiang, X. Zhan, Y. Jin, X. Chen, X. Yang, K. Wang, W. Cao, D. Qi, *J. Am. Chem. Soc.* 2022, 144, 21328-21336.
- [7] G. Pan, X. Hou, Z. Liu, C. Yang, J. Long, G. Huang, J. Bi, Y. Yu, L. Li, ACS Catal. 2022, 12, 14911-14917.
- [8] M. Deng, J. Sun, A. Laemont, C. Liu, L. Wang, L. Bourda, J. Chakraborty, K.
 Van Hecke, R. Morent, N. De Geyter, *Green. Chem.* 2023, 25, 3069-3076.
- [9] P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 2023, 145, 2975-2984.
- [10] J. Sun, H. Sekhar Jena, C. Krishnaraj, K. Singh Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y. Y. Liu, *Angew. Chem. Int. Ed.* 2023, 62, e202216719.
- [11] H. Hu, Y. Tao, D. Wang, C. Li, Q. Jiang, Y. Shi, J. Wang, J. Qin, S. Zhou, Y. Kong, J. Colloid. Interf. Sci. 2023, 629, 750-762.
- [12] X. Zhang, J. Zhang, J. Miao, X. Wen, C. Chen, B. Zhou, M. Long, *Chem. Eng. J.* 2023, 466, 143085.
- [13] Y. Liu, W.-K. Han, W. Chi, Y. Mao, Y. Jiang, X. Yan, Z.-G. Gu, *Appl. Catal.* B 2023, 331, 122691.
- [14] H. Cheng, H. Lv, J. Cheng, L. Wang, X. Wu, H. Xu, Adv. Mater. 2022, 34,

2107480.

- [15] D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2023, 135, e202217479.
- [16] W.-K. Han, H.-S. Lu, J.-X. Fu, X. Liu, X. Zhu, X. Yan, J. Zhang, Y. Jiang, H. Dong, Z.-G. Gu, *Chem. Eng. J.* 2022, 449, 137802.
- [17] M. Wu, Z. Shan, J. Wang, T. Liu, G. Zhang, Chem. Eng. J. 2023, 454, 140121.
- [18] Y. Zhang, J. Qiu, B. Zhu, M. Fedin, B. Cheng, J. Yu, L. Zhang, *Chem. Eng. J.* 2022, 444, 136584.
- [19] Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, *Appl. Catal. B* 2023, 333, 122780.