Supplementary Information

Constructing Z-Scheme WO_3/C_3N_4 heterojunctions with enlarged

internal electric field and accelerated water oxidation kinetics for

robust CO₂ photoreduction

Zhijia Song^a, Qian Chen^b, Zhiwei Sun^a, Kuan Chang^a, Zhaoxiong Xie^{a,c}, Qin Kuang^{a,c,*} ^aState Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

^bState Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.

^cInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.

E-mail: qkuang@xmu.edu.cn

Figure S1. Zeta potential of WO₃ NS, C₃N₄ NS and 10%WO₃/C₃N₄ in deionized water.

Figure S2. SEM images of C_3N_4 NS.

Figure S3. SEM images of WO₃ NS.

Figure S4. (a) AFM image and (b) the corresponding height profile of C_3N_4 NS; (c) AFM image and (d) the corresponding height profile of WO₃ NS.

Fig. S5 (a) TEM image, (b) HAADF-STEM image and (c-f) EDS mapping images of $10\%WO_3/C_3N_4$.

Figure S6. N₂ adsorption-desorption isotherms of C₃N₄ NS, WO₃ NS and 10%WO₃/C₃N₄.

Figure S7. ESR spectra of WO₃ NS.

Figure S8. XPS spectra of O 1s in WO₃ NS, C₃N₄ NS, and 10%WO₃/C₃N₄.

Figure S9. ¹H NMR spectra of the residual liquid obtained from CO_2 photoreduction for $10\%WO_3/C_3N_4$.

Figure S10. (a) TEM image and (b) XRD pattern of $10\%WO_3/C_3N_4$ after photocatalytic CO_2 reduction test.

Figure S11. Control experiments and of 10% WO_3/C_3N_4 heterojunction.

Figure S12. ESR spectra of (a) DMPO- O_2^- in methanol dispersion and (b) DMPO- O_4^- in aqueous dispersion in the presence of C_3N_4 NS, WO₃ NS, and 10%WO₃/ C_3N_4 in the dark.

Figure S13.TEM images of (a) Au-WO₃-PD and (b) Au-10%WO₃/C₃N₄-PD.

Figure S14. In situ irradiated XPS of (a) C 1s, (b) N 1s, and (c) W 4f for 10%WO₃/C₃N₄.

Figure S15. The transient photocurrent density of WO₃ NS, C₃N₄ NS and 10%WO₃/C₃N₄.

The internal electric field (IEF) magnitude was calculated by the equation developed by Kanata et al.: $F_S = (-2\rho V_S / \varepsilon \varepsilon_0)^{1/2}$, in which Fs is the IEF magnitude, ρ is the surface charge density, V_S is the surface voltage, ϵ is the low-frequency dielectric constant, and ε_0 is the permittivity of free space (ε and ε_0 are two constants). It can be found that the IEF magnitude is mainly determined by V_S and ρ . To assess their IEF magnitude, Vs was surveyed via open-circuit potential measurements, and p was determined through the transient photocurrent density measurements. Based on the previous report, integrating the measured transient photocurrent density minus the steady-state values of photocurrent with respect to time yields a value that is proportional to the number of negative charges accumulated at the surface. As depicted in Figure S17, the calculated integral areas for WO₃ NS, C₃N₄ NS, and 10%WO₃/C₃N₄were 0.039, 0.072, and 0.115, respectively. In other words, their surface charge densities were 0.039, 0.072, and 0.115 µC/cm², respectively. As depicted in Figure 4a, the OCP for WO₃ NS, C₃N₄ NS, and 10%WO₃/C₃N₄ were 37 mV, 52 mV, and 105 mV, respectively. Under the assumption that the intensity of WO₃ NS was normalized to "1", the IEF magnitude were calculated to be 1.0, 1.6, and 2.9 for WO₃ NS, C₃N₄ NS, and 10%WO₃/C₃N₄, respectively, using the aforementioned equation.

Figure S16. Equivalent circuit diagram for simulating the Nyquist plots of EIS.

Figure S17. CO₂ physical adsorption capacity of C_3N_4 NS, WO₃ NS, and 10%WO₃/ C_3N_4 .

Figure S18. Water contact angle tests on the surface of (a) C_3N_4 NS, (b) WO₃ NS and (c) $10\%WO_3/C_3N_4$.

Figure S19. Conventional H₂O oxidation activities of as-prepared photocatalysts (The symbols 5%, 10%, 15% and 20% on the x-axis represent the 5%WO₃/C₃N₄, 10% WO₃/C₃N₄, 15% WO₃/C₃N₄ and 20% WO₃/C₃N₄ samples, respectively).

		Products		Reference	
Materials	Experiment condition	$(\mu mol \ g^{-1} \ h^{-1})$			
		CH_4	СО		
10%WO ₃ /C ₃ N ₄	300 W Xe lamp	2.6	9.4	This work	
CeO ₂ /C ₃ N ₄	300 W Xe lamp	0.60	8.99	Sci. China Mater., 2023, 66, 3165–3175	
$BiVO_4/Ni_2P/g$ - C_3N_4	300 W Xe lamp	0.11	6.40	Appl. Catal. B: Environ., 2023, 337, 122957	
WO_x/Pt -g- C_3N_4	300 W Xe lamp	3.12	5.89	Carbon, 2023, 214 , 118337	
Ti ₃ C ₂ T _x /CCN	300 W Xe lamp	1.4	0.73	Chinese J. Catal., 2023, 53, 109-122	
${\rm Bi}_{19}{\rm S}_{27}{\rm Br}_3/{\rm g}{\rm -C}_3{\rm N}_4$	300 W Xe lamp	0	12.87	Appl. Catal. B: Environ., 2022, 307, 121162	
Cu modified g-C ₃ N ₄	300 W Xe lamp	0.73	9.91	J. Colloid Interface Sci., 2022, 622,336-346	
Pt@Def-CN	300 W Xe lamp	6.3	0.06	Angew. Chem. Int. Ed., 2022, 134, e202203063	
Bi-BCN	300 W Xe lamp (380 nm cut-off filter)	0	8.17	Chem. Eng. J., 2023, 478, 147350	
AUNB/g-C ₃ N ₄	300 W Xe lamp (AM 1.5 filter)	0	5.5	Chem. Eng. J., 2022, 430 , 132853	
24-CN-EDA	300 W Xe lamp (420 nm<λ<780 nm)		1.72	Chem. Eng. J., 2023, 455, 140746	

Table S1. A summary of recent C_3N_4 -based materials for CO_2 photoreduction.

Table S2. The examine of photogenerated electron-hole balance in as-prepared samples.

	Reduction products (µmol g ⁻¹ h ⁻¹)		Oxidation products	Electron-hole
Sample			$(\mu mol g^{-1} h^{-1})$	balance
	CH_4	СО	O ₂	N_{e}/N_{h^+}
C ₃ N ₄ NS	0.36	2.1	1.7	1.04
5%WO ₃ /C ₃ N ₄	1.5	5.9	5.9	1.01
$10\%WO_3/C_3N_4$	2.6	9.4	9.9	1.00
$15\%WO_3/C_3N_4$	2.3	7.9	8.5	1.01
$20\%WO_3/C_3N_4$	2.0	6.6	7.4	0.99
WO ₃ NS	0	0	0	null