Synergistic enhancement of photocatalytic hydrogen production in TiO₂ nanosheets through light-induced defect formation and Pt single atoms

Majid Shahsanaei,^a Nastaran Farahbakhsh,^a Sadegh Pour-Ali,^{b,c} Annika Schardt,^d Setareh Orangpour,^a Carsten Engelhard,^{d,e} Shiva Mohajernia,^b Manuela S. Killian,^{*a} Sina Hejazi ^{*a,f}

^a Chemistry and Structure of novel Materials, Department of Chemistry and Biology, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany

^b Faculty of Materials Engineering, Sahand University of Technology, Tabriz, 51335-1996, Iran

^c Department of Chemical and Materials Engineering, NRGMATs, University of Alberta,

Donadeo Innovation Centre for Engineering, Edmonton Canada

^d Analytical chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-

Reichwein-Str. 2, D-57076 Siegen, Germany

^e Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter Str. 11, D 12489 Berlin, Germany

^f National Research Council, Nanotechnology Research Centre, Edmonton, Alberta T6G 2M9, Canada

* Corresponding authors' emails: <u>manuela.killian@uni-siegen.de</u> (M.S. Killian) and <u>hejazi.sina@ualberta.ca</u> (S. Hejazi)

Conditions	Abbreviation	Total time under UV illumination (min.)	Resting time before precursor addition (min.)
Light-induced samples	LI0	10	0
	LI5	10	5
	LI10	10	10
	LI20	10	20
	LI60	10	60
Photo-deposited	PD5	15	0
samples	PD10	20	0

Table S1. Summary of experimental conditions for each TiO_2 -NSs sample

Table S2. AQY values for various TiO_2 -NSs under UV illumination.

Sample	AQY (%)
Ref	0.01
LIO	0.69
LI5	2.36
LI10	1.92
LI20	1.41
LI60	1.56
PD5	0.63
PD10	0.32

Table S3. Comparison of the maximum photocatalytic performance of various TiO_2 -based nanomaterials with Pt as the cocatalyst.

Photocatalyst	Photoactivity, H ₂ generation rate	Maximum AQY (%) / Wavelength (nm)	Incident light	Ref.
TiO ₂ NSs	1170.35 μmol g ⁻¹ h ⁻¹	2.4 / 365	680 mW cm ⁻² UVLED	Current work
TiO ₂ NSs	385 μmol g ⁻¹ h ⁻¹	/ 365		17
TiO ₂ NSs-BNS	575.6 µmol g ⁻¹ h ⁻¹	2.9 / 365	450 W Xe arc lamp	38
TiO ₂ NSs-Pt	3.75 mL h ⁻¹ g ⁻¹	/ 365		45
TiO ₂ nanoflakes	900 μL	/ 365	150 W Xe arc lamp	54
TiO ₂ film	4900 μL	/ 365		55
TiO ₂ nanobelts	38.33 mmol mg _{pt} ⁻¹ h ⁻¹	/ 320	300 W Xe lamp	56
Black TiO ₂	3.30 mmol g ⁻¹	33 / 375	Fluorescent	57
TiO ₂ nanofiber	1400 µmol g ⁻¹ h ⁻¹	/ 365	300 W Xe lamp	58

---: The corresponding value has not been reported.

Fig. S1. Various states of TiO_2 -NSs: (a) before light-induced and without Ar purging, and after (b) 5, and (c) 10 minutes only under UV exposure, and after (d) 0, (e) 5, (f) 10, (g) 20, and (h) 60 minutes rest after cutting off the UV-light.

Fig. S2. Various states of TiO_2 -NSs: (a) before light-induced and with Ar purging, and after (b)

5, and (c) 10 minutes under UV exposure and Ar purging, and after (d) 0, (e) 5, (f) 10, (g) 20,

and (h) 60 minutes rest after cutting off the UV-light and Ar purging.

Fig. S3. STEM images from (a) PD5 and (b) PD10 samples. (c) Corresponding elemental mapping of Ti, O, and Pt taken from PD10 sample.

Fig. S4. FESEM images of various samples: (a) pristine TiO₂-NSs, (b) LI0, (c) LI5, (d) LI10, (e) LI20, (f) LI60, (g) PD5, and (h) PD10.

Fig. S5. High-resolution XPS spectra of Ti 2p and O 1s from e LI5 and PD20 samples.

Fig. S6. Negative ToF-SIMS spectra of pristine and LI5 samples, along with the corresponding PtO isotope distribution pattern.

Fig. S7. Normalized hydrogen evolution rate of Ref, LI5, and PD5 samples with respect to Pt

loading.