
S1

Supplementary Information for

Machine Learning Enabled Exploration of Multicomponent Metal Oxides for 

Catalyzing Oxygen Reduction in Alkaline Media

Xue Jia* and Hao Li*

Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

* Corresponding Author:

jia.xue.d8@tohoku.ac.jp (X. J.)

li.hao.b8@tohoku.ac.jp (H. L.)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2024



S2

ML algorithms

The coefficient of determination (R2) and root mean squared error (RMSE) were used to evaluate the 

performance of the ML model. A higher R² value (i.e., the value closer to 1.0), or a lower RMSE (i.e., the 

value closer to 0 µA·cm-2), signifies a better model performance. It is important to note that when using ANN, 

the features should be scaled to have a mean of zero and a standard deviation of one [1]. Conversely, XGBoost 

and LightGBM, as tree-based ensemble models, do not require such scaling, as they primarily focus on the 

distribution between variables rather than their absolute scale [2]. 
We first used ANN to build a model based on the initially whole dataset to evaluate the data quality. For the 

final dataset after cleaning, we employed ANN, XGBoost, and LightGBM to build the ML models on the 

training dataset and compare their performance. The hyperparameters for the models built based on the dataset 

in 0.8 and 0.63 VRHE are respectively shown in Tables S1 and S2.

Table S1 The hyperparameters for different algorithms based on the dataset in 0.8 VRHE.

Initial dataset Final dataset after cleaning

ANN ANN XGBoost LightGBM

hidden_layer_sizes = 
(150,100,40)
activation = ‘relu’
solver = ‘adam’
alpha = 0.01
learning_rate_init = 0.01
max_iter = 100
batch_size = 64
random_state = 42
verbose = 1

hidden_layer_sizes = 
(150,100,60)
activation = ‘relu’
solver = ‘adam’
alpha = 0.01
learning_rate_init = 0.01 
max_iter = 100
batch_size = 64
random_state = 42
verbose = 1

n_estimators = 500
colsample_bytree = 0.8
gamma = 0.0
max_depth = 6
min_child_weight = 2
reg_alpha = 1
reg_lambda = 1
subsample = 1
learning_rate=0.01
random_state = 0
n_jobs = 2

n_estimators = 500
boosting_type = ‘gbdt’
objective = ‘regression’
colsample_bytree = 0.6
max_depth = 9
min_child_samples = 3
num_leaves = 13
subsample = 0.2
learning_rate = 0.01
reg_alpha = 0.1
reg_lambda = 0.1
random_state = 42
force_col_wise=True
is_unbalance = True
verbose = -1



S3

Table S2 The hyperparameters for different algorithms based on the dataset in 0.63 VRHE.

Initial dataset Final dataset after cleaning

ANN ANN XGBoost LightGBM

hidden_layer_sizes = 
(200,150,70)
activation = ‘relu’
solver = ‘adam’
alpha = 0.01
learning_rate_init = 0.01
max_iter = 100
batch_size = 64
random_state = 42
verbose = 1

hidden_layer_sizes = 
(200,100,50)
activation = ‘relu’
solver = ‘adam’
alpha = 0.01
learning_rate_init = 0.01 
max_iter = 200
batch_size = 64
random_state = 42
verbose = 1

n_estimators = 500
colsample_bytree = 0.8
gamma = 0.0
max_depth =7 
min_child_weight = 3
reg_alpha = 1
reg_lambda = 1
subsample = 1
learning_rate = 0.01
random_state = 0
n_jobs = 2

n_estimators = 500
boosting_type = ‘gbdt’
objective = ‘regression’
colsample_bytree = 0.6
max_depth = 8
min_child_samples = 2
num_leaves = 13
subsample = 0.2
learning_rate = 0.01
reg_alpha = 0.1
reg_lambda = 0.1
random_state = 42
force_col_wise = True
is_unbalance = True
verbose = -1

Furthermore, we performed the symbolic regression model using the elemental property features in Figure 

2c-d. The mode hypterparameters are: populations = 30, model_selection = ‘best’, niterations = 50, 

binary_operators = [‘+’, ‘-’, ‘*’, ‘/’], unary_operators=[‘cos’, ‘exp’, ‘sin’, ‘neg’, ‘square’, ‘log10’, ‘tan’]. The 

hyperparameters for ROOST and CrabNet are default parameters.

Table S3 The equations generated by symbolic regression based on the dataset in 0.80 VRHE. The features x0, 

x1, ..., x15 correspond to the features shown in Figure 2c-d.

Score Equation
0 0 -0.86954945
1 0.08 -24.075083 / x12

2 0.01 -0.6569974 / cos(x11)
3 0.13 (x12 / x5) + -1.518347
4 0.02 tan(-1.2127134 + sin(x12 / x5))
5 0.02 tan(sin(sin(x12 / x5)) + -1.1909018)
6 0.12 -1.4982516 + sin(0.111019574 * (x10 + tan(x10)))
7 0.12 tan(sin(0.10763502 * (tan(x10) + x10)) - x3)
8 0.10 tan(sin(sin(0.10763502 * (tan(x10) + x10))) - x3)
9 0.03 tan(sin(sin(sin(0.10763502 * (x10 + tan(x10))))) + -1.1909018)
10 0.02 (x11 * -0.4162485) + tan(sin((tan(x10) + x10) * 0.10763502) - x3)
11 0.04 tan(sin((x10 + tan(x10)) * square(-0.28647247)) - 0.8872833) - cos(cos(x11))
12 0.05 (tan(sin((tan(x10) + x10) * 0.10763502) - x3) / x3) + (-0.44395217 * x11)
13 0.07 (tan(sin(sin((tan(x10) + x10) * 0.10763502)) - x3) / x3) + (x11 * -0.44395217)
14 0.00 (tan(sin(sin((tan(x10) + x10) * sin(0.10763502))) - x3) / x3) + (x11 * -0.44395217)
15 0.01 (x11 * -0.44395217) + (tan(sin(sin(((tan(x10) + x10) * 0.10763502) + x4)) - x3) / x3)
16 0.00 (x11 * sin(-0.44395217)) + (tan(sin(sin(((tan(x10) + x10) * 0.10763502) + x4)) - x3) / x3)



S4

Table S4 The equations generated by symbolic regression based on the dataset in 0.63 VRHE. The features x0, 

x1, ..., x15 correspond to the features shown in Figure 2c-d.

Score Equation
0 0 -0.31296986
1 0.03 x11 * -0.50815225
2 0.16 sin(-11.425274 / x12)
3 0.13 sin(square(tan(x10)) * -0.30022746)
4 0.20 sin(tan(square(tan(x10)) * -0.30305976))
5 0.07 tan(sin(tan(square(tan(x10)) * -0.30305976)))
6 0.01 x3 * sin(tan(-0.30305976 * square(tan(x10))))
7 0.04 tan(sin(tan(-0.30305976 * square(tan(x10))))) / 1.1619223
8 0.05 tan(neg(square(cos(square(square(square(tan(x10)))) - x3))))
9 0.01 tan(neg(square(square(cos(square(square(square(tan(x10)))) - x3)))))
10 0.04 tan(neg(square(square(cos(sin(square(square(square(tan(x10)))) - x3))))))
11 0.02 tan(neg(square(square(cos((x3 - square(square(square(tan(x10))))) + -0.13868064)))))
12 0.00 tan(neg(square(square(cos((x3 - square(square(square(tan(x10))))) + tan(-0.13868064))))))

13 0.02
tan(neg(square(square(cos(x3 - (square(square(square(tan(x10)))) - -0.121624485)))))) - 
0.048299428

14 0.00
tan(neg(square(square(cos((square(square(square(tan(x10)))) - -0.121624485) - x3))))) + 
neg(tan(0.048299428))

15 0.00
tan(neg(square(sin(square(sin(square(square(tan(square(tan(x10)))) - -1.7352135))) * x3)) * 
x3)) + -0.04448677



S5

Figure S1 (a-b) Distribution of current densities under (a) 0.8 VRHE and (b) 0.63 VRHE with the original values. 

(c-d) Pearson correlations among 21 features in the (c) 0.8 VRHE dataset and (d) 0.63 VRHE dataset.



S6

Figure S2 Performance of the models built by (a, d) ANN, (b, e) XGBoost, and (c, f) LightGBM on the 0.8 

VRHE and 0.63 VRHE training dataset using 10-fold cross validation.



S7

Figure S3 Performance of the models built by (a, c) ANN, and (b, d) LightGBM on the 0.8 VRHE and 0.63 

VRHE training dataset and test dataset. 



S8

Figure S4 Comparison between experimental and predicted values by ROOST on the (a) training and (b) test 

sets, and by CrabNet on the (c) training and (d) test sets. The unit of RMSE is lg(µA·cm-2).



S9

Figure S5 Predictive current density values at 0.8 VRHE for the ternary systems based on the trained XGBoost 

model.



S10

Figure S6 Predictive current density values at 0.8 VRHE for the ternary systems based on the trained XGBoost 

model.



S11

Figure S7 Predictive current density values at 0.8 VRHE for the ternary systems based on the trained XGBoost 

model.



S12

Figure S8 Predictive current density values at 0.63 VRHE for the ternary systems based on the trained XGBoost 

model.



S13

Figure S9 Predictive current density values at 0.63 VRHE for the ternary systems based on the trained XGBoost 

model.



S14

Figure S10 Predictive current density values at 0.63 VRHE for the ternary systems based on the trained 

XGBoost model.



S15

Reference

[1] L. Wang, K. Fu, Artificial Neural Networks, in: Wiley Encyclopedia of Computer Science and 
Engineering, 2009: pp. 181–188. https://doi.org/10.1002/9780470050118.ecse021.

[2] D. Sepiolo, A. Ligęza, Towards Explainability of Tree-Based Ensemble Models. A Critical Overview, in: 
W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, J. Kacprzyk (Eds.), New Advances in 
Dependability of Networks and Systems, Springer International Publishing, Cham, 2022: pp. 287–296.


