Low-temperature Tolerant Lithium-rich Manganese-based Cathode Enabled by Facile SnO₂ Decoration

Diaohan Wang¹, Wenlei Wang¹, Kaihua Li¹, Jinze Song¹, Xinhai Yuan¹, Qinghong Huang¹, Zexun Tang^{2*}, Lijun Fu^{1*}, Yuping Wu¹

¹State Key Laboratory of Materials-Oriented Chemical Engineering, College of Energy

Science and Engineering, and School of Chemistry and Molecular Engineering,

Nanjing Tech University, Nanjing, 211816, Jiangsu Province, China

²College of Materials and Chemical Engineering, Hunan Institute of Engineering,

Xiangtan, 411104, Hunan Province, China

Email Addresses: l.fu@njtech.edu.cn; lijunfufu@sina.com (L. F.);

tangzexun@163.com (Z. T.)

Supporting Information

EXPERIMENTAL SECTION

Material Preparation

The pristine LLOS cathode material, denoted as $Li[Li_{0.144}Ni_{0.136}Co_{0.136}Mn_{0.544}]O_2$ or expressed as $0.336Li_2MnO_3 \cdot 0.664LiNi_{0.239}Co_{0.239}Mn_{0.451}O_2$, was synthesized employing the carbonate co-precipitation method. The raw materials of MnSO₄·H₂O, NiSO₄·6H₂O, and CoSO₄·7H₂O with a molar ratio of 4:1:1. These compounds were dissolved in deionized water to formulate a 2.0 M solution of mixed metal ions (called mixed solution A). Concurrently, a 2.0 M NaCO₃ solution was prepared, herein denominated as mixed solution B.

The pH value of mixed solution (comprising mixed solutions A and B) was maintained at 7.5 by using aqueous ammonia. Subsequent to a 16-hour stirring period at a stable temperature of 55 °C, a co-precipitated mixture denoted as $Ni_{0.1}Co_{0.1}Mn_{0.4}[CO_3]_{0.6}$ was formed. Next, the precipitated compound was subsequently filtered, washed, and subjected to drying at 80 °C for a duration of 12 hours. After that, the pretreated precursors were mixed with Li_2CO_3 , with 5 wt.% excess. The mixed precursor was initially subjected to a heat treatment at 500 °C for 5 hours and subsequently calcined at 850 °C for 12 hours in an air atmosphere to get the pristine materials, designated as LLOS.

To modify the Li[Li_{0.144}Ni_{0.136}Co_{0.136}Mn_{0.544}]O₂ material with SnO₂, 10 mg of nano-SnO₂ and 1 g of LLOS were dispersed in 10 mL of isopropyl alcohol and subjected to ultrasonic agitation for one hour. The mixture was then continuously stirred at 80 °C until complete solvent evaporation. The resulting powder was heated under the temperature of 600 °C for 4 h in air and cooled to room temperature, getting the final S-LLOS sample.

Material Characterization

Crystalline structure of the samples was analyzed by X-ray diffraction with Cu K α radiation and the samples were scanned from $2\theta = 10-80^{\circ}$ at a scan rate of 10° per minute. The morphologies of the materials were investigated via field-emission scanning electron microscopy (FESEM) (JSM-7800F, JEOL, Japan). The elemental contents of the samples were obtained *via* analysis on an Elementar Vario EL cube. X-ray photoelectron spectroscopy (XPS) was performed on a Kratos AXIS Ultra DLD. For the XPS test, the cell was disassembled in a glovebox, and the composite powder was collected after rinsing with dimethyl carbonate (DMC) and dried. To get deep insight into the enhanced cycle performance of the electrode after SnO₂ modification, half-cells were disassembled within an argon-filled glovebox and washed with dichloromethane (DMC) to obtain electrodes cycled for different cycles. The valence states of elements in LLOS and S-LLOS, were calibrated using a C 1s binding energy value of 284.8 eV.

Electrochemical measurement

Electrochemical performances of the samples were tested in CR2025 coin cells with galvanostatic cycling. The positive electrodes including active materials(80wt %), carbon black (10wt %), and polyvinylidene fluoride (10wt %) were added in N-methyl pyrrolidinone (NMP), and then the slurry was casted on Al foil. After drying at 80 °C for 12h, the electrodes were assembled into CR2025 coin cells in a glovebox filled with argon. The cells were composed of lithium metal as the anode, and Celgard 2400 membrane as the separator. The electrolyte was 1.0 M LiPF6 (Nanjing MJS Energy Technology Co., Ltd) dissolved in a mixture of ethylene carbonate/ethyl methyl carbonate (1:1, volume ratio). Based on the amount of separator and active material used, 50 μ L electrolyte was added to each cell. CV plots were recorded on an electrochemical workstation (CHI660 Chenhua, Shanghai) and the scanning rate of cyclic voltammetry (CV) curves was 0.2 mV s⁻¹ in the voltage range of 2.0-4.8 V. Galvanostatic charge/discharge tests were performed on a LAND Test System (LAND 2001 CT Wuhan China) at 25 °C. Nyquist plots were obtained with an AC oscillation amplitude of 5 mV in the frequency range of 100 kHz to 0.01 Hz at various

temperatures. The Galvanostatic intermittent titration technique (GITT) was employed by charging/discharging the cells for a duration of 10 minutes at a current density of 50 mA g⁻¹, based on the stabilized capacity, followed by a 40-minute relaxation period. Then diffusion coefficient $\binom{D}{Li}^{Li}$ from GITT was calculated by the following equation (Fick's second law). Where τ , m_B, M_B, V_M, and S denote the time duration of the current pulse, the mass, the molar mass, the molar volume of active materials, and the electrode area, respectively. Δ Es and Δ Et refer to the steady-state potential alteration caused by the current pulse and the potential variation during constant current, respectively.

$$D_{Li^{+}} = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta Es}{\Delta Et}\right)^2 \left(\tau \ll \frac{L^2}{D_{Li^{+}}}\right)$$

Figure S1. XRD patterns of the Ni_{0.1}Co_{0.1}Mn_{0.4}[CO₃]_{0.6} precursor.

Figure S3. Nitrogen adsorption isotherms of LLOS and S-LLOS.

Figure S5. The CV curves of (a) LLOS and (b) S-LLOS during the first three cycles at a scan rate of 0.2 mV s⁻¹ in the voltage range of 2.0–4.8 V at room temperature. Figure S6. XPS spectrum of Sn 3d for S-LLOS sample after five cycles at room temperature.

Figure S7. The GITT curves of (a) LLOS and (b) S-LLOS; (c, d) The calculated

 \log_{Li}^{D} to \log_{Li}^{+} values of two electrodes during charge and discharge processes.

Figure S8. The CV curves at different scan rates for (a) LLOS and (b) S-LLOS. (c-e) the b values obtained via fitting according to log(i)=b log(v) + log(a).

Figure S9. (a) The charge-discharge curves of (b) LLOS and (c) S-LLOS at -20 °C.

Figure S10. The charge-discharge curves of (a) LLOS and (b)S-LLOS at 0 °C after pre-cycled at room temperature for 5 times.

Figure S11. The charge-discharge curves of (a) LLOS and (b)S-LLOS of different cycle numbers at -20 °C after pre-cycled at room temperature for 5 times.

Figure S12. The rate performance for LLOS and S-LLOS at 0 $^{\circ}$ C (a). The charge/discharge curves of (b) LLOS and (c) S-LLOS at 0 $^{\circ}$ C at different rates.

Figure S13. The rate performance for LLOS and S-LLOS at -20 °C. (a) The charge/discharge curves of (b) LLOS and (c) S-LLOS at different rates.

Figure S14.The average discharge voltage of LLOS and S-LLOS at 0 °C.

Figure S15. XPS spectrum of Sn 3d for LLOS and S-LLOS samples after five cycles at -20 °C.

Daffered	Sample		
Refined pa	rameters	LLOS	S-LLOS
D ₂	a, b (Å)	2.84782	2.84845
K ⁵ m	c (Å)	14.21336	14.2137
α=p=γ=90*	V (Å ³)	99.828	99.875
	a (Å)	4.93959	4.93521
	b (Å)	8.53278	8.54171
C2/m	c (Å)	5.02318	5.01611
α=γ=90°	β (°)	109.36	109.171
	V (Å ³)	199.748	199.728
12/	а		4.74124
p42/mnm α=β=γ=90°	с	1	3.17884
	V (Å ³)		71.458

Table S1. XRD refined results of LLOS and S-LLOS.

Table S2. The values derived from the impedance curve fitting.

	283.	15 K	273.	.15 K	263.	15 K	253.	15 K
	R _{CEI}	Rct						
LLOS	62.36 Ω	110.3 Ω	88.4 Ω	200.1 Ω	125.6 Ω	508.4 Ω	177.7 Ω	1387 Ω
S-LLOS	$17.14 \ \Omega$	50.2 Ω	21.3 Ω	95.9 Ω	26.3 Ω	218.4 Ω	34.6 Ω	602.7 Ω

Modifying method	Cutoff voltage	Current density (mA g ⁻¹)	Cycle number and capacity retention	Ref.
Sulfur-assisted surface modification	2.0-4.8 V	100	200/94.1%	[1]
Fluoride coating and functional doping	2.0-4.8 V	40	120/90.1%	[2]
Higher intralayer configuration entropy	2.1-4.8 V	25	100/93%	[3]
LiTaO ₃ coating	2.0-4.8 V	25	200/80.3%	[4]
Na doped	2.0-4.8 V	100	200/93.1%	[5]
F-doped and Li ₂ SnO ₃ coating	2.0-4.8 V	25	200/73%	[6]
LiMn _{1.4} Ni _{0.5} Mo _{0.1} O ₄ Coating and Mo Doped	2.0-4.8 V	25	200/66.8%	[7]
This work	2.0-4.8 V	100	200/97.1%	

Table S3. Room-temperature performance comparison of LLOS cathodes.

Cathode materials	Temperature (°C)	Capacity after modification (mAh g ⁻¹)	Cycle number and capacity retention	Ref.
Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ @ Li ₂ O-B ₂ O ₃	-20 °C	137.1@25 mA g ⁻¹	/	[8]
Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ @AlF ₃	-20 °C	109.3@25 mA g ⁻¹	/	[9]
LiF decoration on Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂	-20 °C	135@25 mA g ⁻¹	10 (100%)	[10]
Li ₂ TiO ₃ @Zr-doped- Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂	-20 °C	130@25 mA g ⁻¹	70 (around 94%)	[11]
$\begin{split} Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2\\ @Li_7La_3Zr_2O_{12} \end{split}$	-20 °C	134.1@25 mA g ⁻¹	/	[12]
This work	-20 °C	109.9@25 mA g ⁻¹	200 (95%) 400 (84.2%)	

Table S4. Low-temperature performance comparison of LLOS cathodes.

References

1. Z. Xu, X. Guo, W. Song, J. Wang, T. Qin, Y. Yuan and J. Lu, *Adv Mater*, 2024, **36**, e2303612.

2. H. Zhao, W. Li, J. Li, H. Xu, C. Zhang, J. Li, C. Han, Z. Li, M. Chu and X. Qiu, *Nano Energy*, 2022, **92**.

3. J. Song, F. Ning, Y. Zuo, A. Li, H. Wang, K. Zhang, T. Yang, Y. Yang, C. Gao, W. Xiao, Z. Jiang, T. Chen, G. Feng and D. Xia, *Adv Mater*, 2023, **35**, e2208726.

4. M. Si, D. Wang, R. Zhao, D. Pan, C. Zhang, C. Yu, X. Lu, H. Zhao and Y. Bai, *Adv Sci*, 2020, **7**, 1902538.

W. He, P. Liu, B. Qu, Z. Zheng, H. Zheng, P. Deng, P. Li, S. Li, H. Huang, L. Wang,
Q. Xie and D. L. Peng, *Advanced Science*, 2019, 6.

6. D. Wang, T. Xu, Y. Li, D. Pan, X. Lu, Y.-S. Hu, S. Dai and Y. Bai, *ACS Applied Materials & Interfaces*, 2018, **10**, 41802-41813.

7. X. Ji, Y. Xu, H. Feng, P. Wang, Y. Zhou, J. Song, Q. Xia and Q. Tan, ACS Applied Materials & Interfaces, 2021, 13, 47659-47670.

8. S. Chen, L. Chen, Y. Li, Y. Su, Y. Lu, L. Bao, J. Wang, M. Wang and F. Wu, ACS Appl Mater Interfaces, 2017, 9, 8641-8648.

9. B. Zhao, J. Xie, H. Zhuang, X. Liu, W. Li, X. Hu, Y. Jiang and J. Zhang, *Solid State Ionics*, 2020, **347**, 115245.

10. X. Ding, Y.-X. Li, F. Chen, X.-D. He, A. Yasmin, Q. Hu, Z.-Y. Wen and C.-H. Chen, *Journal of Materials Chemistry A*, 2019, **7**, 11513-11519.

11. Yanwu Zhai, Jicheng Zhang, Heng Zhang, Xinzhi Liu, Chin-Wei Wang, Limei Sun, and Xiangfeng Liu, *Journal of The Electrochemical Society*, 2019, **166**, A1323-A1329.

12. C. Shen, Y. Liu, W. Li, X. Liu, J. Xie, J. Jiang, Y. Jiang, B. Zhao and J. Zhang, J Colloid Interface Sci, 2022, 615, 1-9.