Supplementary Information

2

Minimizing ion/electron pathways through ultrathin conformal
 holey graphene encapsulation in Li- and Mn-rich layered oxide
 cathodes for high-performance lithium-ion batteries

- 6
- 7 Sungwook Kim,^a Jeonguk Hwang,^b Youngseok Jo,^a Changyong Park, ^b Neetu Bansal,^c Rahul R.

```
8 Salunkhe, *c Heejoon Ahn *a, b, d, e
```

- 9
- ¹⁰ ^aDepartment of Battery Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu,
- 11 Seoul, 04763, Republic of Korea
- 12
- 13 ^bDepartment of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro,
- 14 Seongdong-gu, Seoul, 04763, Republic of Korea
- 15
- ¹⁶ ^cMaterials Research Laboratory, Department of Physics, Indian Institute of Technology, NH-
- 17 44, Jammu 181221, Jammu and Kashmir, India
- 18
- ¹⁹ ^dHuman-Tech Convergence Program, Department of Organic and Nano Engineering, Hanyang
- 20 University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- 21
- ²² ^eInstitute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro,
 ²³ Seongdong-gu, Seoul 04763, Republic of Korea

- 25
- 26 *Corresponding authors: E-mail: ahn@hanyang.ac.kr (Heejoon Ahn),
- 27 rahul.salunkhe@iitjammu.ac.in (Rahul R. Salunkhe)
- 28
- 29

40 Fig. S2 Zeta potentials of the samples used in the coating process.

- 60 Fig. S4 TEM-EDS mapping images of HGLMR.

71 Fig. S5 (a) Ni 2p and (b) Co 2p XPS spectra of BLMR, GLMR, and HGLMR.

87 Fig. S6 (a–c) FE-SEM and HR-TEM images of HG02LMR, HG05LMR, and HG10LMR.

Fig. S7 (a) Sheet resistance values of the electrodes based on carbon contents. (b) Cycling
performance based on carbon contents at 1.0 C.

Fig. S10 (a) Sheet resistances of the HGLMR, S-HGLMR, and L-HGLMR electrodes. (b) cycling
performance of the BLMR, HGLMR, S-HGLMR, and L-HGLMR electrodes.

Fig. S11 (a–c) GCD curves illustrating the specific capacities of BLMR, GLMR, and HGLMR for

155 each cycle.

- ...

Fig. S12 (a–c) dQ/dV curves for BLMR, GLMR, and HGLMR for each cycle.

189 Fig. S13 (a–c) GCD curves of the BLMR, GLMR, and HGLMR electrodes at various C-rates.

Fig. S14 Sheet resistance values of the BLMR, GLMR, and HGLMR electrodes.

 207

 208

 209

 210

 211

 212

 213

 214

 215

 216

 217

229 Fig. S16 Top-view FE-SEM images of the BLMR, GLMR, and HGLMR electrodes after 100 cycles.

	Comple	Analysis results (weight %)							
_	Sample	Li	Ni	Со	Mn				
	BLMR	10.05	12.57	6.33	40.07				
	GLMR	10.04	12.24	6.16	39.06				
	HGLMR	9.97	12.05	6.06	38.83				
234									
235									
236									
237									
238									
239									
240									
241									
242									
243									
244									
245									
246									

Table S1 ICP-OES analysis of the BLMR, GLMR, and HGLMR particles.

	Sample	Specific surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Average pore size (nm)
	BLMR	3.947	0.005239	34.137
	GLMR	4.2701	0.006089	37.649
	HGLMR	4.3092	0.006232	38.679
248				
249				
250				
251				
252				
253				
254				
255				
256				
257				
258				
259				
260				

Table S2 BET analysis of the BLMR, GLMR, and HGLMR electrodes.

_	Sample	Tap density (g cm ⁻³)
	BLMR	2.859
	GLMR	2.808
	HGLMR	2.804
262		
263		
264		
265		
266		
267		
268		
269		
270		
271		
272		
273		
274		
275		
276		
277		
278		
210		

Table S3 Tap density analysis results for BLMR, GLMR, and HGLMR.

		BLMR			GLMR			HGLMR		
	Composition (%)	Etching time (s)								
		0	50	100	0	50	100	0	50	100
	LiF	41.3	63.4	65.6	11.3	44.0	49.5	9.8	33.9	40.6
	Li _x PO _y F _z	19.1	15.6	17.2	-	1.4	14.8	-	3.8	17.6
	CF ₂	39.6	20.8	17.2	88.7	54.6	35.7	90.2	62.3	41.8
281										
282										
283										
284										
285										
286										
287										
288										
289										
290										

Table S4 Areal ratio variation in the XPS depth profiles of F 1s based on etching times from 0 280 to 100 s.

292 Table S5 Comparison of electrochemical performances of the HGLMR electrode with293 previously reported surface-coated LMR electrodes.

Cathode material	Coating material	Mass loading (mg cm ⁻²)	Voltag e windo w (V)	Rate capability	Cycle stability	Ref
$Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	LiErO ₂	2.0-3.0	2.0-4.7	162.1 mAh g ⁻¹ at 5.0 C	80% after 100 cycles at 1.0 C	[1]
${\sf Li}_{1.2}{\sf Ni}_{0.13}{\sf Co}_{0.13}{\sf Mn}_{0.54}{\sf O}_2$	Li ₂ ZrO ₃	3	2.0-4.8	155.6 mAh g ⁻¹ at 5.0 C	89% after 150 cycles at 1.0 C	[2]
$Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	KMnO₄	2.0	2.0-4.8	91.6 mAh g ⁻¹ at 10.0 C	88% after 170 cycles at 0.2 C	[3]
$Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	(NH ₄) ₂ SiF ₆	2.0	2.0-4.8	76.0 mAh g ⁻¹ at 10.0 C	90.4% after 100 cycles at 1.0 C	[4]
$Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	In ₂ O ₃	1.3	2.0-4.8	109.1 mAh g ⁻¹ at 5.0 C	80% after 200 cycles at 1.0 C	[5]
$Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	PO4 ³⁻ -doped layer@spinel @rGO	1.35	2.0-4.8	82.3 mAh g ⁻¹ at 10.0 C	86.5% after 200 cycles at 1.0 C	[6]
$Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	Graphene quantum dot	1.2	2.0-4.8	113.2 mAh g ⁻¹ at 5.0 C	86.5% after 150 cycles at 1.0 C	[7]
$Li_{1.2}Ni_{0.2}Mn_{0.6}O_{2}\\$	N-doped Graphene	3.5	2.0-4.8	≈ 100.0 mAh g ⁻¹ at 8.0 C	86% after 200 cycles at 0.2 C	[8]
$Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O_2$	$Li_{1\cdot 4}Y_{0\cdot 4}Ti_{1\cdot 6}PO_4$	2.65	2.0-4.8	78.3 mAh g ⁻¹ at 10.0 C	83.2% after 100 cycles at 1.0 C	[9]
$Li_{1.2}Ni_{0.16}Co_{0.08}Mn_{0.56}O_{2}$	PEI/reduced holey graphene oxide	4	2.0–4.8	78.0 mAh g ⁻¹ at 10.0 C	87.8% after 100 cycles at 1.0 C	This work

305 References

306 1. Z. Wei, D. Zhang, J. Zhong, C. Zheng, J. Feng, and J. Li, *Batteries Supercaps*, 2023, **6**, 307 e202200568.

- J. Chen, S. Cao, Z. Li, H. Li, C. Guo, R. Wang, L. Wu, Y. Zhang, Y. Bai, and X. Wang, ACS Appl.
 Mater. Interfaces, 2023, **15**, 36394–36403.
- 310 3. T. Wei, X. Qin, C. Lei, and Y. Zhang, J. Alloy. Compd., 2022, 895, 162647.
- 4. Q. Luo, J. Kang, Z. Liao, X. Feng, H. Zou, W. Yang, C. Pai, R. Waiyin Sun, and S. Chen, ACS
 Appl. Energy Mater., 2022, 5, 4641–4650.
- 313 5. M. Yu, X. Wei, X. Min, A. Yuan, and J. Xu, *Mater. Chem. Phys.*, 2022, 286, 126228.
- 314 6. M. Zhao, Y. Wang, Y. Wang, S. Liu, Z. Chen, F. Yong, P. Qian, S. Yang, Q. Huang, and Z.
- 315 Ning, J. Alloy. Compd., 2024, 983, 173822.
- 316 7. M. Yu, X. Wei, X. Min, A. Yuan, and J. Xu, *Energy Fuels*, 2022, **36**, 5502–5512.
- 317 8. M. Chen, G. Zhang, B. Wu, M. Liu, J. Chen, W. Xiang, and W. Li, ACS Appl. Energy Mater.,
 318 2022, 5, 4307–4317.
- 319 9. A. Li, C. Qian, G. Mao, Z. Liu, Z. Li, Y. Zhang, L. Yin, L. Shen, and H. Li, *J. Power Sources*, 320 2024, **599**, 234245.
- 321
 322
 323
 324
 325
 326
 327
 328
 329