Electronic Supplementary Material

A Fluorene-Carbazole Conjugated Polymer Hole Conductor for Efficient and Stable Perovskite Solar Cells

Bei Wang^a, Junjun Guo^a, Xuanang Luo^b, Chenxu Han^a, Bo Zhao^a, Ihsan Ullah^a, Yuxin Kong^a,

Xinyu Zhao^a, Lei Ying^{b,*}, Jianyu Yuan^{a,*}

^aJiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, P. R. China

^bInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640 Guangdong, P.R. China.

*Corresponding author: msleiving@scut.edu.cn (L. Y.); jyyuan@suda.edu.cn (J. Y.)

Materials:

PF8Cz was prepared and purchased from VOLT-AMP optoelectronics Tech. Co., Ltd, lead bromide (PbBr₂, 99.99%) and lead iodide (PbI₂, 99.999%) from Sigma-Aldrich, cesium iodide (CsI, 99.99%) was from Alfa Aesar and formamidinium iodide (FAI, 99.9%) and methylammonium bromide (MABr, 99.99%) from Great solar, 2,2',7,7'-tetrakis[N,N-di(4methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD), poly[bis(4-phenyl)(2,4,6trimethyl-phenyl)amine] (PTAA) and tris(pentafluorophenyl)borane (LAD) from Xi'an Polymer Light Technology Corp. Solvents used for perovskite solar cell include anhydrous N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), chlorobenzene were from Alfa Aesar. All the materials were used directly without further purification. Glass/F-doped tin oxide (FTO) was purchased from Advanced Election Technology Co., Ltd.

Characterizations and measurements

The current density-voltage (*J-V*) characteristics of the solar cells were measured using a Keithley 2400 Digital Source Meter and simulated AM 1.5G spectrum at 100 mW/cm² with a solar simulator (Class AAA, 94023A-U, Newport) in the ambient atmosphere. Before testing, the light intensity of the xenon lamp was calibrated with a standard silicon solar cell (91150 V, Newport Oriel). The external quantum efficiency (EQE) measurement of the solar cells was characterized on a Solar Cell Scan 100 system (Zolix Instruments Co. Ltd.). UV-Vis spectra were recorded on a PerkinElmer model Lambda 750. Steady-state PL data and time-resolved PL spectra were obtained by testing with a FluoroMax-4 spectrofluorometer (HORIBA Scientific) with a 150 W ozone-free xenon lamp laser and an excitation wavelength of 490 nm. Cross-section SEM images were obtained by a Zeiss 500 field in high vacuum mode at 15 kV accelerating voltage. The FTO/TiO₂/perovskite/HTMs/MoO₃ structure was adopted to perform EIS measurements carried out through a Zahner IM6 electrochemical workstation while applying a bias under open-circuit conditions with a frequency between 1 MHz and 100 Hz

under monochromatic LED (500 nm, 100 mW cm⁻²) light irradiation. Cyclic voltammetry (CV) curves of polymers were obtained using a CHI630E electrochemical workstation with a threeelectrode system. The working electrode was a glassy carbon electrode, the reference electrode was a saturated calomel electrode (SCE), and the counter electrode was a platinum wire. The electrolyte solution was 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) in anhydrous acetonitrile. The experiments were conducted under a nitrogen atmosphere at a scan rate of 200 mV s⁻¹. The energy levels of the highest occupied molecular orbital (E_{HOMO}) of the polymers were calculated from the onset oxidation and reduction potentials, respectively, using the following equation: $E_{HOMO} = -\left[e\left(E_{ox} - E_{Fc/Fc^+} + 5.1\right)\right](eV)$, where *e* is the elementary charge, E_{ox} are the onset oxidation potential versus the calomel electrode, and E_{Fc/Fc^+} is the ferrocene/ferrocenium redox potential versus SCE, which was measured as 0.42 V. Grazing incidence wide-angle X-ray scattering (GIWAXS) was performed using MetalJet-D2, Excillum (Xenocs, France). The X-ray wavelength is 0.134144 nm. The sample-to-detector distance was 214.545 mm, and the incidence angle of the X-ray beam to the film surface was set at 0.20°. Scattering images were recorded using a 2D detector (Pilatus3R 1M, Dectris). The resulting GIWAXS data was analyzed using a custom Python-based code.

TRPL fitting:

The TRPL test results were fitted by a biexponential function as follows:

$$f(t) = A_1 e^{(-\frac{t}{\tau_1})} + A_2 e^{(-\frac{t}{\tau_2})} + A_0$$

where A_0 is a constant, t is the time, A_1 and A_2 are the decay amplitudes, τ_1 and τ_2 are the decay times, and the average PL lifetime (τ_{ave}) can be obtained by the following equation:

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

SCLC measurements:

SCLC measurements are often followed by three regimes: (i) the ohmic region ($I \propto V$) to calculate the electrical conductivity, (ii) the TFL region ($I \propto V^n$, n>2) to estimate the trap density, and (iii) Child's region ($I \propto V^2$) to determine the charge mobility. The *J-V* characteristics of the hole-only devices are fitted using the Mott-Gurney law, expressed as:

$$J = \frac{9}{8}\varepsilon\varepsilon_0\mu\frac{V^2}{L^3}$$

where ε is the dielectric constant of the active layer, μ is the mobility, ε_0 is the permittivity of free space, and *L* is the thickness of the active layer. All measurements were performed in the dark, and the voltage was scanned from -5 to 5 V.

Furthermore, the conductivity (σ) was extracted from the slope of the current-voltage (*I*-*V*) curve:

$$I = \frac{\sigma AV}{d}$$

where A is the area of the sample and d is the thickness of the HTMs.

Trap density:

A pure hole device of FTO/PEDOT:PSS/Perovskite/HTMs/MoO₃/Ag was used to characterize the trap density (n_{trap}) in the device. The trap density characterization satisfies the following equation:

$$V_{T \ F} = \frac{eL^2}{2\varepsilon_0 \varepsilon_r} n_t r a p$$

where V_{TFL} is the trap-filled limit voltage and L is the thickness of the perovskite film.

Fig. S1. AFM Step-height profiles for extracting thickness of HTM: ~50 nm (PTAA); ~160 nm (Spiro-OMeTAD); ~120 nm (PF8Cz).

Fig. S2. UV-vis absorption spectra of perovskite and perovskite/different HTMs films.

Fig. S3. Cyclic voltammetry curves of the oxidation of films.

Fig. S4. $J^{1/2}$ -V characteristics of the different HTMs based on hole-only devices.

Fig. S5. J-V characteristics of the different HTMs based on hole-only devices.

Fig. S6. J-V curves based on different concentrations of PF8Cz-based PSCs.

Fig. S7. The SPO of the Spiro-OMeTAD-based PSCs.

Fig. S8. Sector-averaged *I-q* curves in the IP (dashed lines) and OOP (solid lines) directions.

Fig. S9. *Intensity* $\cdot \sin \chi$ as a function of χ of PF8Cz, PTAA, and spiro-OMeTAD thin films. Inset are the calculated rDoC values.

Fig. S10. Top-view SEM images of perovskite/PTAA and perovskite/Spiro-OMeTAD.

Fig. S11. AFM images of the perovskite and perovskite/different HTMs films.

V _{OC} (V)	$J_{ m SC}$ (mA/cm ²)	FF (%)	PCE (%)
0.998	24.45	0.70	17.09
1.069	24.95	0.70	18.55
1.121	25.09	0.76	21.31
1.174	25.47	0.78	23.05
-	V _{oC} (V) 0.998 1.069 1.121 1.174	$\begin{array}{c c} V_{\rm OC} & J_{\rm SC} \\ ({\rm V}) & ({\rm mA/cm^2}) \end{array} \\ \hline 0.998 & 24.45 \\ 1.069 & 24.95 \\ 1.121 & 25.09 \\ 1.174 & 25.47 \end{array}$	$\begin{array}{c cccc} V_{\rm OC} & J_{\rm SC} & FF \\ (V) & (mA/cm^2) & (\%) \end{array}$ $\begin{array}{c} 0.998 & 24.45 & 0.70 \\ 1.069 & 24.95 & 0.70 \\ 1.121 & 25.09 & 0.76 \\ 1.174 & 25.47 & 0.78 \end{array}$

-

25 mg mL⁻¹

Table S1. PV device parameters of different concentrations of PF8Cz-based PSCs.

Table S2. Fitting parameters of the decay amplitude and decay time obtained from TRPL

25.18

0.74

20.45

spectra.

1.095

Condition	$\tau_{\rm average} ({\rm ns})$	τ_1 (ns)	τ_2 (ns)	A_1	A_2
Perovskite	738.5	11.3	1026.2	570.8	15.8
Perovskite/Spiro- OMeTAD	4.6	0.9	7.5	2276.4	330.4
Perovskite/PF8Cz	11.6	0.8	15.1	1623.4	259.3

HTMs	Device architectures	PCE (%)	References
PT-Cz50	ITO/SnO2/PVSK/HTM/MoO ₃ /Ag	22.53%	<i>Adv. Funct. Mater.</i> , 2023, 33 , 2308435
PC-DPP	TO/SnO2/perovskite/HTMs/MoO ₃ / Ag	22.67%.	ACS Energy Lett., 2023, 8 , 2878
PFBTI	glass/ITO/SnO ₂ /Cs _{0.05} FA _{0.95} PbI ₃ /H TM/MoO ₃ /Ag	23.10%	<i>Adv. Mater.</i> , 2022, 34 , 2110587
PM6	ITO/SnO ₂ /perovskite/HTMs/MoO ₃ / Ag	24.04%,	Angew. Chem. Int. Ed., 2022, 61 ,e202210356
PE10	lass/ITO/SnO ₂ /perovskite (FA _{0.85} MA _{0.15} PbI ₃)/HTM/MoO ₃ /Ag	22.30%	Angew. Chem. Int. Ed., 2022, 61 , e202201847
Nap-SiBTA	FTO/compact-TiO ₂ /mesoporous- TiO ₂ /perovskite/NapSiBTA or Spiro-OMeTAD/Au	23.07%	Adv. Energy Mater., 2023, 13, 2202680
PTTDZ-Cl	FTO/SnO ₂ /FAMA perovskite/HTM/MoO ₃ /Ag.	22.20%	Sol. Rrl, 2023, 2300706
PNTDT- 2F2T	ITO/SnO ₂ /MAPbI ₃ /HTM/Au.	22.19%	J. Mater. Chem.a, 2022, 10 , 12187
PBQ6	ITO/SnO ₂ /perovskite/polymer HTM/MoO ₃ /Ag	22.60%	<i>Science China Chemistry,</i> 2021, 64 , 2035
PC6	glass/FTO/SnO ₂ /perovskite (MAPbI ₃)/HTM/Au	22.20%	<i>Angew.Chem.Int.Ed.</i> , 2022, 61 , e202114341
2DP-TDB	ITO/SnO ₂ /FA _{0.85} MA _{0.15} PbI ₃ /HTMs/ MoO ₃ /Ag	22.17%	ACS Energy Lett., 2021, 6 , 1521
PBTFO	ITO/SnO ₂ /perovskite/polymer HTM/Au	22.10%	Nano Energy, 2020, 78 , 105159
PBDB-Cz	ITO/SnO ₂ /perovskite/HTM/MoO ₃ / Ag	22.06%	<i>Adv. Energy Mater.</i> , 2022, 12 , 2102697
PMSe	ITO/SnO2/perovskite/HTMs/MoO ₃ /Ag	24.53%	J. Am. Chem. Soc., 2022, 144, 9500
PFBCz	ITO/TiO ₂ /perovskite/HTM/MoO ₃ /Ag	23.28%	This work

Table S3. Recently reported n-i-p PSCs based on conjugated polymer HTM with > 22% effici