Electronic Supplementary Information

Nitridation-boosted V e_g occupation of VN@CNT flexible electrode for high-rate Zn-ion hybrid supercapacitors

Yuyang Cao^a, Shiqiang Wei^{a,*},Yujian Xia^a, Quan Zhou^a, Yixiu Wang^a, Wenjie Xu^a, Changda Wang^a, Shuangming Chen^{a,*}, Li Song^a

^aNational Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, P. R. China.

Email: sqw@ustc.edu.cn; csmp@ustc.edu.cn

Figure S1. XRD pattern of V₂C MXene before delamination

Figure S2. SEM image of VN@CNT membrane and corresponding elemental mapping image of V, N, C, O.

Figure S3. TEM image of VN@CNT.

Figure S4. SEM image of C-VN.

The calculation of resistivity is based on the **Perloff** equation:

$$\rho = WK_a R_a$$

$$K_a = \pi/ln2$$

 R_a is Resistivity, W is thickness.

Membrane	^W (μm)	$R_a(\mathbf{\Omega})$	ρ(Ω m)	σ(S/m)
VN@CNT	9.9	0.9	4.04E-05	2.48E+04
V ₂ C@CNT	8.5	11.81	4.55E-04	2.20E+03

Table S1. The thickness, resistance, resistivity, and conductivity of VN@CNT and V2C@CNT.

Figure S5. SEM image of cross-section of VN@CNT and V2C@CNT flexible membrane.

Figure S6. I-V curves of VN@CNT.

The resistivity can also be given from the following equation, and IV test, I-V test is used as a supplementary method to obtain the conductivity of VN@CNT.

$$\sigma = \frac{L}{R S}$$

R is Resistivity obtained from I-V test, *L* is length of VN@CNT membrane, *S* is the cross-sectional area of VN@CNT membrane.

Membrane	$R(\Omega)$	L(mm)	S(m ²)	σ(S/m)
VN@CNT	3.94	2.00	2.87E-08	1.76E+4

Table S2. Conductivity calculation process parameters.

Figure S7. High-resolution V 2p XPS spectra of V₂C@CNT.

Figure S8. High-resolution N 1s XPS spectra of VN@CNT.

Figure S9. Rate capability at wider range of current densities of VN@CNT.

Figure S10. (a) SEM, (b) TEM, and (c) HRTEM images of VN@CNT after 500 charge-discharge cycles.

Figure S11. EDS mapping images of post-cycling VN@CNT of V, N, C.

Figure S12. Electrochemical performance of the VN@CNT and V₂C@CNT cathode for ZHSCs. GCD curves of (a) VN@CNT, and (b) V₂C@CNT at the density of 0.1 A g^{-1} . (c) CV curves V₂C@CNT of at the scan rate of 0.2 to 100 mV s⁻¹ of V₂C@CNT. (d) Specific capacitance calculated from CV curves of VN@CNT and V₂C@CNT.

Figure S13. Rate capability at different current densities of C-VN.

Figure S14. Rate capability at different current densities of A-V₂C@CNT.