Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Spacer-engineering construction of continuous proton transport networks for

cardo poly(biphenyl indole) high-temperature proton exchange membranes

Sifan Chen,^a Zhuang Ma,^a Jialin Zhang,^c Jianchun Niu,^a Shuomeng Zhang,^a Qinghua Zhang,^{*a} Shiyuan Chen,^b Shanfu Lu,^{*c} Miao Wang^b and Qinggang He^{*a}

^aCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
^bZhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China.

^cSchool of energy and power engineering, Beihang University, Beijing, 100191, China.

E-mail: qghe@zju.edu.cn (Q. He); lusf@buaa.edu.cn (S. Lu); qhzhang@zju.edu.cn (Q. Zhang)

Supporting figures

Figure S1. ¹H NMR spectrum of (a) OXIE, (b) OXIB and (c) OXIH in CDCl₃.

Figure S2. ¹H NMR spectrum of (a) POXIE, (b) POXIB and (c) POXIH in CDCl₃. The ¹H NMR spectrum of POXIA show two new signals of 7-8 ppm (a and b) assigned to biphenyl protons, and the rest of the peak assignments were the same as those of OXIA.

Figure S3. ¹H NMR spectrum of (a) POXIB and (b) POXIH in DMSO-*d6*. The two peaks at 2.92 ppm and 3.22 ppm are attributed to $-CH_3$ and $-CH_2$ - directly attached to the N atoms in QA. The quaternization efficiency can be calculated from the integral ratio of 2.92 ppm QA methyl protons to 7-8 ppm aromatic protons, which proves that the quaternization reaction is close to completion. The efficiency of quarternization could calculated from the integral ratio of the aromatic proton (12 H) peaks at 7-8 ppm with the QA methyl protons (3 H) at 2.9 ppm.

Figure S4. Digital photographs of (a) POXIE-QA, (b) POXIB-QA, (c) POXIH-QA.

Figure S5. Top-view SEM image of POXIB-QA membrane. Inserted are the cross-section of the SEM image and the thickness of the membrane.

Figure S6. Top-view SEM image of POXIH-QA membrane. Inserted are the cross-section of the SEM image and the thickness of the membrane.

Figure S7. Top-view SEM image of POXIE-QA membrane. Inserted are the cross-section of the SEM image and the thickness of the membrane.

Figure S8. AFM topographical height image and phase image of POXIE-QA (a, b), POXIB-QA (c, d).

Figure S9. SAXS plots of (a) POXIE-QA/PA and POXIE-QA, and (b) POXIB-QA/PA and POXIB-QA.

Figure S10. TGA curves of POXIA-QA under N_2 flow (heating rate: 10 °C min⁻¹).

Figure S11. Length swelling ratios of the POXIA-QA membranes under saturated PA doping level.

Figure S12. Polarization curves and power density curves of the POXB-QA/PA membrane based on H_2/O_2 single cell under at different temperatures.

Supporting tables

Polymer	M _n ^a (×10 ⁴)	M _w ^b (×10 ⁴)	PDIc
POXIE	1.4	3.6	2.5
POXIB	1.6	4.3	2.6
POXIH	2.4	6.8	2.8

Table S1. Molecular weight and polydispersity index of POXIA-QA.

(a) Number-average molecular weight.

(b) Weight-average molecular weight.

(c) Polydispersity index, PDI= M_w/M_n .

Membrane	IEC _{theo} ª (meq/g)	IEC _{NMR} ^b (meq/g)	IEC _{titr} ¢ (meq/g)	Tensile stress- strain (MPa)	Elongation break (%)	PDL	Steady-state PA retention (%)	Swelling ratio (%)
POXIE- QA	2.04		1.68±0.04	36.45	7.58	10.55	75.98	10.20%± 1.56
POXIB- QA	1.93	1.90	1.86±0.05	21.83	16.72	24.18	88.25	35.60%±2.29
POXIH- QA	1.83	1.83	1.75±0.05	24.50	12.86	19.97	86.03	28.50%±2.03

Table S2. IECs of POXIA-QA with different measuring method.

(a) Theoretical IEC, calculated from the ratios of completely conversion.

(b) Calculated from the ¹H NMR (Fig. S3) by the ratio of aromatic hydrogen at 7-8 ppm (A_1) and the -CH₃ of piperidinium at 2.92 ppm (A_2) . The degree of quaternization was calculated according to the following equation:

Degree of quaternization = $\frac{4 \times A_2}{A_1} \times 100\%$

(c) Experimental value determined by Mohr titration.

Table S3. Comparison of the present work and related work on PA doping and proton conductivity.

Membrane	IEC	PA doping level	PA retention	swelling ratio (%)	Proton conductivi ty at 160 °C (S cm ⁻¹)	Max proton conductivity (S cm ⁻¹)	Ea (kJ mol ⁻¹)	Refere nce
POXIE-QA	1.68±0.0 4	10.55	75.98% (80°C/40%R H)	10.20%± 1.56	0.05	0.062@180 °C	19.43	This work
POXIB-QA	1.86±0.0 5	24.18	88.25% (80°C/40%R H)	35.60%±2.2 9	0.086	0.098@180 °C	11.51	This work
POXIH-QA	1.75±0.0 5	19.97	86.03% (80°C/40%R H)	28.50%±2.0 3	0.103	0.113@180 °C	7.35	This work
IMOPBI (IM- 81)	1.19 mmol/g	361.2 ± 22.9 wt.%		209.5 ± 13.7	0.1	0.104@170 °C		1
PBI-Sc-35		10	75%		0.1	0.104@170 °C	11.7	2
PBI/sGO-2		15	75%		0.118	0.136@180 °C	12.36	3
PBI/1Mus		13.65		70.99 ± 3.3	0.045	0.047@170 °C		4
AmPBI-Car-10		10.5	40% (80°C/40%R H)	156.7(volu me swelling)	0.11	0.125@180 °C	12	5
PPBI/Mim7+/PA M2		15.2	90% (140°C H2O vapor)		0.215	0.22@180°C	7.66	6
L-10		18.7	65.4% (80°C/40%R H)	91% (area swelling)	0.257	0.313@200° C		7
QSILMs		5.1			0.04	0.06@180 °C		8
1%-PBI		288%	76.7% (80°C/40%R H)		0.168	0.17@180°C		9
mPBI-TzPEN25		323±10 %	35% (60°C/80- 90%RH)		0.195	0.195@160° C	17.9	10
XTPPO-40-15		7.5±0.3	60% (80°C/50%R H)	18±1% (length swelling)	0.05	0.064@180 °C		11
ABPBI/5IL@SN R		<4	<70% (boiled water)	18.22 ± 1.2 (area	0.04	0.04@180 °C		12

				swelling)				
50PPF/PBI		160%	<40%	60% (volume swelling)	0.06	0.062@140 °C		13
10%PAF-6- PA/OPBI		317.6%	39.82%	117.2%	0.073	0.089@200 °C	14.47	14
PA/PIBI-Q80	2.22	12.5		354.9% (volume swelling)	0.06	0.07@180 °C	12.3	15
PenTrip(CH ₃)- PyPBI		32	65.5%	225% (volume swelling)	0.22	0.24@180 °C		16
Ph(CF ₃)-PyOPBI		22.1	72%	35%	0.07	0.078@180 °C	15.38	17

Membrane	Fuel gas	Temperature (°C)	Pt loading (mg cm ⁻²) (cathode)	Max power density (W cm ⁻²)	Reference
POXIE-QA	H2, O2	180	1.1	1.0	This work
POXIE-QA	H2, O2	160	1.1	0.86	Thi work
IMOPBI	H2, Air	160	1	0.429	1
PBI-Sc-5	H2, Air	160	1.5	0.411	2
PBI/sGO-2	H2, Air	160	1	0.364	3
PBI/1Mus	H2, Air	150	1	0.586	4
AmPBI-Car-5	H2, Air	160	1.5	0.216	5
PPBI/Mim ₇ +/ PAM2	H2, O2	180	0.5	0.610	6
L-10	H2, Air	160	0.6	0.438	7
QSILMs	H2, Air	200	1.3	0.320	8
1%-PBI	H2, O2	160	0.6	0.597	9
mPBI-TzPEN25	H2, Air	160	1	0.447	10
ABPBI/5IL@SNR	H2, O2	180	0.4	0.28	12
50PPF/PBI	H2, O2	160	1	0.607	13
PSf-TEA-110	H2, O2	160	0.65	<0.45	18

 Table S4. Comparison of the present work and related work on HT-PEMFCs.

Reference

- 1 J. Wang, G. Liu, A. Wang, W. Ji, L. Zhang, T. Zhang, J. Li, H. Pan, H. Tang and H. Zhang, *J. Membr. Sci.*, 2023, **669**, 121332.
- 2 H. Chen, S. Wang, F. Liu, D. Wang, J. Li, T. Mao, G. Liu, X. Wang, J. Xu and Z. Wang, *J. Membr. Sci.*, 2020, **596**, 117722.
- 3 Y. Devrim and G. N. Bulanık Durmuş, Int. J. Hydrogen Energy, 2022, 47, 9004–9017.
- 4 Z. Guo, J. Chen, J. J. Byun, M. Perez–Page, Z. Ji, Z. Zhao and S. M. Holmes, *J. Membr. Sci.*, 2022, 641, 119868.
- 5 Y. Cui, S. Wang, D. Wang, G. Liu, F. Liu, D. Liang, X. Wang, Z. Yong and Z. Wang, J. Membr. Sci., 2021, 637, 119610.
- 6 Z. Rajabi, M. Javanbakht, K. Hooshyari, M. Adibi and A. Badiei, Int. J. Hydrogen Energy, 2021, 46, 33241-33259.
- 7 P. Wang, X. Li, Z. Liu, J. Peng, C. Shi, T. Li, J. Yang, C. Shan, W. Hu and B. Liu, J. Membr. Sci., 2022, 659, 120790.
- 8 G. Skorikova, D. Rauber, D. Aili, S. Martin, Q. Li, D. Henkensmeier and R. Hempelmann, J. Membr. Sci., 2020, 608, 118188.
- 9 J. Peng, X. Fu, J. Luo, Y. Liu, L. Wang and X. Peng, J. Membr. Sci., 2022, 643, 120037.
- 10N. N. Krishnan, N. M. H. Duong, A. Konovalova, J. H. Jang, H. S. Park, H. J. Kim, A. Roznowska, A. Michalak and D. Henkensmeier, *J. Membr. Sci.*, 2020, **614**, 118494.
- 11 J. Jang, D.-H. Kim, M.-K. Ahn, C.-M. Min, S.-B. Lee, J. Byun, C. Pak and J.-S. Lee, *J. Membr. Sci.*, 2020, **595**, 117508.
- 12X. Zhang, X. Fu, S. Yang, Y. Zhang, R. Zhang, S. Hu, X. Bao, F. Zhao, X. Li and Q. Liu, J. Mater. Chem. A, 2019, 7, 15288–15301.
- 13X. Hao, Z. Li, M. Xiao, D. Han, S. Huang, G. Xi, S. Wang and Y. Meng, *J. Mater. Chem. A*, 2022, **10**, 10916–10925.
- 14L. Wang, Y. Wang, Z. Li, T. Li, R. Zhang, J. Li, B. Liu, Z. Lv, W. Cai, S. Sun, W. Hu, Y. Lu and G. Zhu, *Adv. Mater.*, 2023, **35**, 2303535.
- 15Q. Ju, H. Tang, G. Chao, T. Guo, K. Geng and N. Li, J. Mater. Chem. A, 2022, 10, 25295–25306.
- 16Harilal, R. Bhattacharyya, A. Shukla, P. C. Ghosh and T. Jana, J. Mater. Chem. A, 2022, 10, 11074–11091.
- 17 Harilal, A. Shukla, P. C. Ghosh and T. Jana, ACS Appl. Energy Mater., 2021, 4, 1644–1656.
- 18H. Tang, K. Geng, J. Hao, X. Zhang, Z. Shao and N. Li, J. Power Sources, 2020, 475, 228521.