A multi-functional electrolyte additive for fast-charging and flame-retardant lithium-ion batteries

Jing Long,^a Jiafang Huang,^a Yuhui Miao,^a Huiting Huang,^a Xiaochuan Chen,*a Junxiong Wu,*a Xiaoyan Li *a and Yuming Chen *a

^aEngineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China.

1. Experiment section

1.1 Materials

Graphite, LiFePO₄(LFP), and carbon black powders were provided by Fujian Judian New Energy Co., Ltd. Lithium discs with a thickness of 450 μ m (Φ = 15.8 mm) were purchased from China Energy Lithium Co., Ltd. ethoxy(pentafluoro)cyclotriphosphazene (PFPN, >98.0%) were purchased from Shanghai Aladdin Co., Ltd. 1,3-dioxolane (DOL, 99.8%), lithium bisfluorosulfonimide salt (LiFSI, 99%), 1 M lithium hexafluorophosphate (LiPF₆) in Dimethyl carbonate (DMC): Ethylene carbonate (EC) (v/v =7:3) were supplied by Duoduo Co., Ltd. The solvents were dehydrated by 4 Å molecular sieves for at least 48 hours and the LiFSI salt was dried at 80 °C overnight inside an Ar-filled glove box (Mikrouna) before use.

1.2 Preparation of electrolytes and electrodes:

All the electrolytes were prepared and stored in a glove box filled with high-purity argon (<0.01 ppm for both water and oxygen). The LDP electrolyte was prepared by dissolving 1 M LiFSI in a mixture of DOL and PFPN with a volume ratio of 9:1, while the LD electrolyte was formulated without the addition of PFPN. The carbonate electrolyte, that is, 1 M LiPF₆ in DMC: EC (v/v =7:3), was used as received. The graphite anodes were obtained by coating the homogeneous slurry containing 80 wt% graphite, 10 wt% carbon black, and 10 wt% CMC in deionized water to a copper foil collector. As for the LFP cathode, a mixed slurry of 80 wt% LFP, 10 wt% carbon black, and 10 wt% PVDF in NMP was coated onto a carbon-coated Al foil collector. The prepared electrodes were dried at 80 °C for 8 h and then subjected to vacuum drying at 60 °C for at least 12 h before use. The mass loading of the graphite electrode for coin cells is about 1.7-1.8 mg cm⁻² and the N/P ratio for the assembled CR2025-type full cells was 1.05~1.15. The typical mass loading of LFP in LFP||Li and graphite||LFP coin cells is about 3.4-3.5 mg cm⁻², which is comparable to values reported in the literature. [S1-S5] For pouch cells, the mass loading of the LFP electrode is about 6.8-6.9 mg cm⁻². To mitigate the risk of local lithium plating at high rates in pouch cells, a high N/P ratio of 1.40

was used.

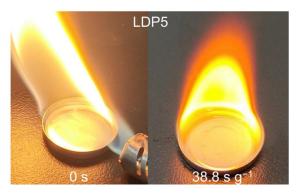
1.3 Electrochemical measurements:

All CR2025-type coin cells were assembled with Celgard 2500 as the separator. Approximately $80~\mu L$ of electrolyte was added to each coin cell to ensure complete wetting of the separator and electrodes. Pouch cells were also assembled for practical evaluation. Galvanostatic charge-discharge and rate tests were performed on Neware battery testers at 25 °C. The ionic conductivity of different electrolytes was measured by EIS from 100~kHz to 0.1~Hz with a 5~mV AC oscillaton. The ionic conductivity was calculated using the equation below

$$\sigma = \frac{L}{RA} \tag{1}$$

where σ is ionic conductivity, L represents the distance between two electrodes, A is the area of stainless steel, and R is the resistance obtained by EIS measurement. The activation energy (E_a) was calculated using Arrhenius equation:

$$\sigma = \sigma_0 exp(-\frac{E_a}{RT}) \tag{2}$$


where σ_0 and E_a is the pre-exponential factor and the activation energy of ion transportation, respectively. The corrosion of Al foil was studied via chronoamperometry testing under 5.0 V for 72 hours. The Al foil was employed as the working electrode while a Li foil was used as both the counter and reference electrode. The electrochemical window of the electrolyte was studied via linear sweep voltammetry (LSV) at a scanning rate of 2 mV s⁻¹.

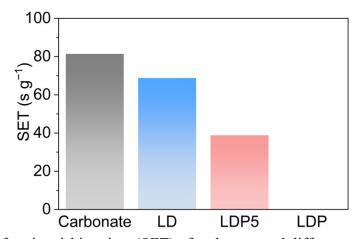
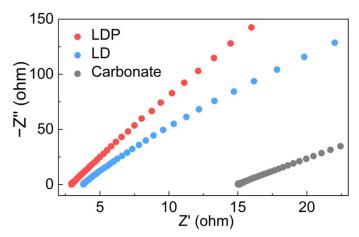
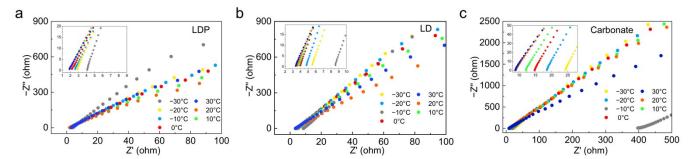
1.4 Characterization:

To record the morphology of graphite anodes cycled using different electrolytes, all the cells were disassembled in an argon-filled glovebox (Mikrouna) with O₂ and H₂O levels <0.1 ppm and the electrodes were gently rinsed with pure DME to remove the impurities. The microstructure and morphology of cycled graphite anodes were examined using a scanning electron microscope (SEM, Hitachi 8100) and a transmission electron microscope (TEM, JEM-F200). The solid electrolyte interphases on the cycled graphite electrodes were analyzed by X-ray photoelectron spectroscopy (SCALAB 250 Xi, Thermo Fisher).

1.5 Theoretical simulations:

Density functional theory (DFT) calculation was performed by Gaussian 09 software. [S6, S7] Molecule structures were optimized using the B3LYP functional with the 6–311G++(d,p) basis set. [S8]

Figure S1. Flammability tests of the addition of 5 vol% PFPN (LDP5), the electrolyte was still flammable.

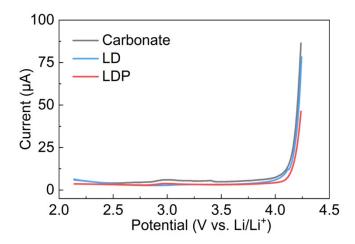

Figure S2. The self-extinguishing time (SET) of carbonate and different addition of PFPN.

Figure S3. Nyquist plots of stainless steel SS||SS symmetric cells using LDP, LD, and carbonate electrolytes.

Figure S4. Nyquist plots of stainless steel SS||SS symmetric cells using (a)LDP, (b)LD, and (c) carbonate electrolytes at various temperatures ranging from -20 °C to 30°C.

Figure S5. The electrochemical window up of three electrolytes. The scan rate was 1.0 mV s⁻¹.

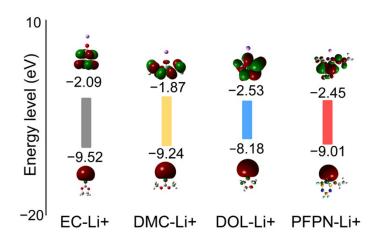


Figure S6. HOMO and LUMO energy levels of EC-Li⁺, DMC-Li⁺, DOL-Li⁺, and PFPN-Li⁺.

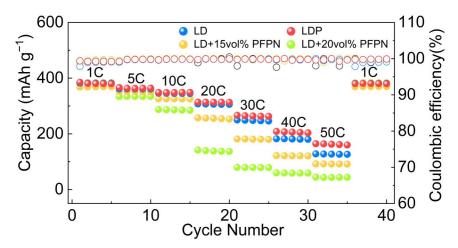


Figure S7. Rate performance of Li||graphite cells with various PFPN additions in LDP electrolytes.

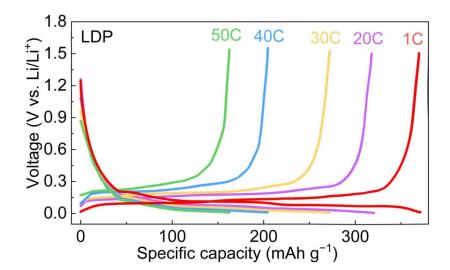
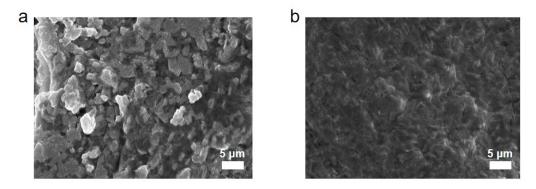
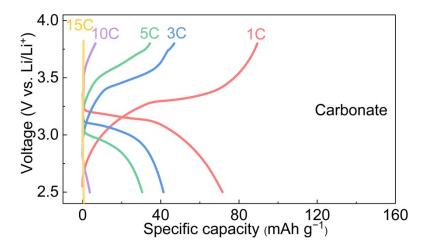
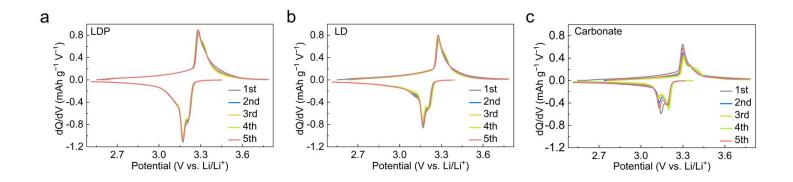
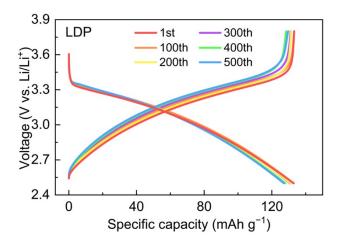



Figure S8. The corresponding charge/discharge curves of Li||graphite cells with LDP.


Table S1 Comparison of the fast-charging battery based on the graphite anode.

Electrolyte consists	Graphite mass loading	Performance (Li graphite)	Ref.
-----------------------------	-----------------------	----------------------------	------


1 M LiFSI in DOL: PFPN (v/v =9:1) (LDP)	1.7~1.8 mg cm ⁻²	\sim 314.2 mAh g $^{-1}$ at 20C after 1000 cycles \sim 164.4 mAh g $^{-1}$ at 50C	This work
1 M LiFSI in DOL	1.3~1.8 mg cm ⁻²	\sim 350.0 mAh g $^{-1}$ at 0.5C after 300 cycles \sim 330.0 mAh g $^{-1}$ at 2C	S9
1.8 M LiFSI in DOL	2.0~2.5 mg cm ⁻²	\sim 315.0 mAh g ⁻¹ at 20C \sim 180.0 mAh g ⁻¹ at 50C	S10
1 M LiPF ₆ in FEC: AN (v/v =7:3)	1.2 mg cm ⁻²	~296.0 mAh g^{-1} at 20C ~290.0 mAh g^{-1} at 20C after 2500 cycles (60°C)	S11
1 M LiTF in DEGDME	5.0 mg cm ⁻²	${\sim}100~mAh~g^{-1}$ at $1A~g^{-1}$	S12
1.5 M LiFSI in DME:BTFE (v/v=1:2)	1.8 mg cm ⁻²	\sim 220.0 mAh g $^{-1}$ at 4C \sim 188.1 mAh g $^{-1}$ at 4C after 200 cycles	S13
LiFSI: AN: FB= 1: 2.4: 3 (by molar ratio)	2.0~3.0 mg cm ⁻²	\sim 302.7 mAh g $^{-1}$ at 8C \sim 310.0 mAh g $^{-1}$ at 5C after 1000 cycles	S14
Li ₃ P coated graphite	2.0~2.5 mg cm ⁻²	4C charge to 70% SOC (259.0mAh g ⁻¹) at -20°C	S15
Applying a MoO _x -MoN _x layer onto graphite surface	0.32 mg cm ⁻² 0.54 mg cm ⁻²	${\sim}340.4~\text{mAh g}^{-1}$ at 6C after 4000 cycles ${\sim}297.7~\text{mAh g}^{-1}$ at 5C	S16


Figure S9. SEM images of the graphite anodes: graphite pre-cycled in (a) LD and (b) LDP under fast-charging 20C after 200 cycles.

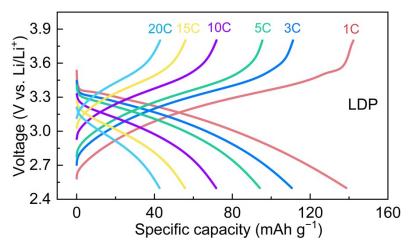

Figure S10. The corresponding charge/discharge curves of graphite||LFP cells with carbonate electrolyte.

Figure S11. The dQ/dV curves of graphite||LFP cells with (a)LDP, (b)LD, and (c)carbonate electrolyte.

Figure S12. The Corresponding charge/discharge curves of graphite||LFP pouch cells with LDP in Fig.6a.

Figure S13. The voltage profiles of graphite||LFP pouch cells in LDP at various cycles as indicated in the legend.

References

- [S1] Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou and Y. Tang, *Adv. Mater.*, 2021, **33**, 2100793.
- [S2] C. Huang, S. Huang, A. Wang, Z. Liu, D. Pei, J. Hong, S. Hou, L. Vitos and H. Jin, *J. Mater. Chem. A*, 2022, **10**, 25500-25508.
- [S3] J. Ge, J. Hong, T. Liu and Y. Wang, J. Mater. Chem. A, 2022, 10, 11458-11469.
- [S4] F. Wang, J. Gao, Y. Liu and F. Ren, J. Mater. Chem. A, 2022, 10, 17395-17405.
- [S5] B. Liu, H. Li, W. Luo, X. Zhang, Z. Liu, P. Yin and R. Zhang, J. Mater. Chem. A, 2024, 12, 10412-10421.
- [S6] G. T. M. Frisch, H. Schlegel, G. Scuseria, M. Robb, J.Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision a. 02 Gaussian, Inc., Wallingford, CT 200, 2009.
- [S7] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- [S8] K. Zsolnai-Fehér, P. Wonka and M. Wimmer, ACM Trans. Graphics, 2018, 37, 1-14.
- [S9] D. Xia, E. P. Kamphaus, A. Hu, S. Hwang, L. Tao, S. Sainio, D. Nordlund, Y. Fu, H. Huang, L. Cheng and F. Lin, *ACS Energy Lett.*, 2023, **8**, 1379-1389.
- [S10] C. Sun, X. Ji, S. Weng, R. Li, X. Huang, C. Zhu, X. Xiao, T. Deng, L. Fan, L. Chen, X. Wang, C. Wang and X. Fan, *Adv. Mater.*, 2022, **34**, 2206020.
- [S11] X. Huang, R. Li, C. Sun, H. Zhang, S. Zhang, L. Lv, Y. Huang, L. Fan, L. Chen, M. Noked and X. Fan, *ACS Energy Lett.*, 2022, 7, 3947-3957.
- [S12] H. Kim, K. Lim, G. Yoon, J. H. Park, K. Ku, H. D. Lim, Y. E. Sung and K. Kang, *Adv. Energy Mater.*, 2017, 7, 1700418.
- [S13] L. L. Jiang, C. Yan, Y. X. Yao, W. Cai, J. Q. Huang and Q. Zhang, *Angew. Chem., Int. Ed.*, 2020, **60**, 3402-3406.
- [S14] S. Lei, Z. Zeng, M. Liu, H. Zhang, S. Cheng and J. Xie, Nano Energy, 2022, 98, 107265.
- [S15] Y. Huang, C. Wang, H. Lv, Y. Xie, S. Zhou, Y. Ye, E. Zhou, T. Zhu, H. Xie, W. Jiang, X. Wu, X. Kong,

H. Jin and H. Ji, Adv. Mater., 2023, DOI: 10.1002/adma.202308675.

[S16] M. Niu, L. Dong, J. Yue, Y. Li, Y. Dong, S. Cheng, S. Lv, Y.-H. Zhu, Z. Lei, J.-Y. Liang, S. Xin, C. Yang and Y.-G. Guo, *Angew. Chem., Int. Ed.*, 2024, DOI: 10.1002/anie.202318663.