Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Optimizing the active interface structure of MnO₂ to achieve sustainable

water oxidation in Acidic Medium

Sanjiang Pan^{1,2,3*#}, Shenao Wang^{1#}, Yu Wang^{1#}, Hang Li¹, Deng Zhao¹, Yang Fu⁴, Hua Liu¹, Jiajing Kou^{1,2,3},

Nan Li^{1,3*}, Desong Wang^{2*}

¹ School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China

² State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004 China

³ Hebei Engineering Research Center for Low Carbon Development and Resource Utilization of Fossil Energy Sources,

Yanshan University, Qinhuangdao 066004, China

⁴ Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529020, China

*E-mail: <u>linan@ysu.edu.cn</u> (N.L.), <u>dswang06@126.com</u> (D.W.), <u>pansanjiang@ysu.edu.cn</u> (S.P)

[#]These authors contributed equally

Supplementary Figure 1. XRD patterns of Er-MnO₂.

Supplementary Figure 2. The overpotential of oxygen evolution reaction with a current density of 50 mA cm⁻² was compared in $0.5 \text{ M H}_2\text{SO}_4$ electrolyte with different electrocatalysts.

Supplementary Figure 3. Cyclic voltammetry curves of MnO₂@Er₂O₃ (scanning rate: 5 mV/s).

Supplementary Figure 4. Cyclic voltammetry curves of MnO₂ (scanning rate: 5 mV/s).

Supplementary Figure 5. Cyclic voltammetry curves of Er-MnO₂ (scanning rate: 5 mV/s).

Supplementary Figure 6. Linear sweep voltammograms of the MnO₂@Er₂O₃ catalyst before and after 1000 CV cycles.

Supplementary Figure 7. Linear sweep voltammograms of the MnO₂ catalyst before and after 1000 CV cycles.

Supplementary Figure 8. Experimental and theoretical volumes of O_2 by the $MnO_2@Er_2O_3$ electrode in a sealed H-type electrolyzer at a current density of 50 mA cm⁻².

Supplementary Figure 9. The Mn 3s XPS spectra of $MnO_2@Er_2O_3$ before and after OER reaction.

Supplementary Figure 10. The O 1s XPS spectra of MnO₂@Er₂O₃ before and after OER reaction.

Supplementary Figure 11. The full-survey XPS spectra of MnO₂@Er₂O₃ before and after OER.

Supplementary Figure 12. XRD patterns of MnO₂@Er₂O₃ before and after the OER reaction.

Supplementary Figure 13. In situ Raman spectra of $MnO_2@Er_2O_3$ on a carbon cloth in 0.5 M H₂SO₄ electrolyte under different external applied potentials (0-1.50 V) and the Raman spectra of Er_2O_3 .

Supplementary Figure 14. In situ Raman spectra of MnO_2 on a carbon cloth in 0.5 M H_2SO_4 electrolyte under different external applied potentials (0-1.50 V).

 $\textbf{Supplementary Figure 15. Local magnification of in-situ Raman spectra of MnO_2 in 0.5 M H_2SO_4 at different applied}$

potentials (1.25 \sim 1.50 V vs. RHE).

Supplementary Figure 16. In situ Raman spectra of Er-MnO₂ on a carbon cloth in 0.5 M H₂SO₄ electrolyte under different external applied potentials (0-1.50 V).

Supplementary Table 1. Faradaic efficiency of the produced oxygen amount during the water splitting process.

O_2

Time (s)	V _{experimental (} mL)	V _{theoritical (} mL)	ŋ/%
0	0	0	0
720	1.11	1.142	97.198
1440	2.22	2.284	97.198
2160	3.36	3.426	98.074
2880	4.49	4.568	98.292
3600	5.61	5.710	98.249
4320	6.70	6.852	97.782
5040	7.83	7.994	97.948
5760	8.96	9.136	98.074
6480	10.08	10.278	98.074
7200	11.20	11.420	98.074

Supplementary Table 2. Calculation of Er element content dissolved in the electrolyte.

Catalyst	The mass of the Er element on	The mass of the Er element	The dissolution
Catalyst	the electrode	of the electrolyte	percentage
MnO ₂ @Er ₂ O ₃	7.032 mg	1.512 mg	21.5 %

Supplementary Table 3. The chemical bond order of the newly formed bond in the structure is shown in Figure 5c.

	Mn		Er	
	8 18		22	23
O _{Mn} 10	0.299965	0.538043	0.389292	1.032118
	11		22	23
O _{Er} 26	0.32661611		0.269091	0.383728
	20		22	
O _{Er} 28	2.41607104		0.69405935	
	1	8	23	
O _{Er} 29	0.104977	1.302225	0.62970807	
	15		21	
O _{Er} 30	0.76844035		0.38141591	

Supplementary Table 4. The bond level of the relevant Mn-O bond is in Figure 5j.

Mn	0	bond order	Mn	0	bond order
1	2	1.32137312		9	0.8387735
	3	1.17778928		10	1.031023
	23	1.42058366	18	12	1.1375752
5	3	0.99617465		16	0.619006
	6	1.11056846		19	0.8880831
	7	1.05999733	11	4	1.2562912
13	7	1.12815407		10	0.1607694
	14	1.40854525		12	0.9287973
15	14	0.79146615		21	2.0088235
	16	0.70028285	8	2	0.9361188
	17	0.87465018		4	0.9056777
	24	2.07554841		6	0.2699771
20	16	0.83824363		9	0.7096119
	17	1.20796969		10	0.813882
	19	1.17173555			
	22	1.95657879			

Supplementary Table 5. Summary of noble-metal-free OER catalyst performance from this work and previous typical

literature.

Catalyst	Flectrolyte	$\eta (\mathrm{mV})$	Stability	Ref.	
Catalyst	Electrolyte	@ $j (mA cm^{-2})$	Stability		
MnO ₂ @Er ₂ O ₃	0.5 M H ₂ SO ₄	342@10	20 h@50 mA cm ⁻²	This work	
MnO ₂	0.5 M H ₂ SO ₄	406@10	11 h@50 mA cm ⁻²	This work	
La- and Mn-codoped		252@10	2(01 @10	Street 2022 200 (((45) (00 (1(
porous cobalt spinel fibers	0.1 M HCIO4	555@10	360 n@10 mA cm ²	Science. 2023, 380 (0045), 609-616.	
Co ₃ O ₄ /FTO	$0.5 \mathrm{~M~H_2SO_4}$	570@10	50 h@1 mA cm ⁻²	Chem. Mater. 2017, 29, 950–957.	
CoMnO _x	pH = 2.5	540@0.1	8 h@0.1 mA cm ⁻²	J. Am. Chem. Soc. 2015, 137, 14887–14904.	
Co ₃ O ₄ @C/carbon paper	0.5 M H ₂ SO ₄	370@10	86.8 h@10 mA cm ⁻²	Nano Energy. 2016, 25, 42-50.	
CoFeNiMoWTe	$0.5 \mathrm{~M~H_2SO_4}$	373@10	100 h@10 mA cm ⁻²	Adv. Energy Mater. 2023, 13, 2301420.	
Mn-doped FeP/Co ₃ (PO ₄) ₂	$0.5 \mathrm{~M~H_2SO_4}$	390@10	8.33 h@5 mA cm ⁻²	ChemSusChem. 2019, 12, 1334-1341.	
Ba [Co-POM]	$1 \text{ M} \text{ H}_2 \text{SO}_4$	410@10	24 h@1.48 V vs. RHE	Nat. Chem. 2018, 10, 24-30.	
Fe-Co ₃ O ₄ @C/FTO	$0.5 \mathrm{~M~H_2SO_4}$	396@10	50 h@10 mA cm ⁻²	Appl. Catal. B. 2022, 303, 120899.	
Co _{0.05} Fe _{0.95} O _y	$0.5 \mathrm{~M~H_2SO_4}$	650@10	85 h@10 mA cm ⁻²	Chem. Commun. 2019, 55, 5017-5020.	
CoFePb/Pt-Ti	$0.05 \ M \ H_2 SO_4$	620@10	160 h@10 mA cm ⁻²	Nature Catalysis. 2019, 2 (5), 457-465.	
Co ₃ O ₄ /CeO ₂ on carbon paper	0.5 M H ₂ SO ₄	347@10	50 h@10 mA cm ⁻²	Nat Commun. 2021, 12 (1), 3036.	
P-Co ₃ O ₄	0.1 M HClO ₄	400@10	$30 \text{ h}@10 \text{ mA cm}^{-2}$	J. Colloid Interface Sci. 2023, 641, 329-337.	
Co ₂ TiO ₄ /CC	$0.5 \mathrm{~M~H_2SO_4}$	513@10	10 h@1.79 V vs. RHE	Inorg. Chem. 2019, 58, 8570-8576.	
NiCo-	0.5 M H-SO	460@10		1 dr. Sai 2010 6 1901920	
nitrides/NiCo2O4/GF	0.3 INI H2SO4	400@10	40 II@1.4 V VS. KHE	AUV. SCI. 2019, 0, 1001029.	
Mo-Co ₉ S ₈ @C	0.5 M H ₂ SO ₄	370@10	24 h@10 mA cm ⁻²	Adv. Energy Mater. 2020, 10, 1903137.	
Co ₃ O ₄ /PGC	$0.5 \ M \ H_2 SO_4$	510@10	-	J Energy Chem. 2020, 49, 8-13.	