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14 Text S1:

15 Determination of ammonia-N:

16 A centrifuge tube was used to contain 125 μL of the electrolyte, followed by sequential addition 

17 of 125 μL of sulfuric acid at a concentration of 0.5 mol L-1, 250 μL of buffer solution (pH = 7), 6 

18 mL of ultra-pure water, and 250 μL of Nessler’s reagent. After shaking, the mixture was allowed to 

19 stand for 30 minutes and then tested at 420 nm using an ultraviolet-visible spectrophotometer (Hach-

20 DR3900).

21 Text S2:

22 Determination of nitrate-N and nitrite-N:

23 60 μL of the electrolyte was placed in a centrifuge tube, followed by the addition of 5.94 mL 

24 of ultra-pure water. The concentrations of nitrate-N and nitrite-N were then analyzed using an ion 

25 chromatograph (Thermo ICS-600) after shaking. For chromatography analysis, a mobile phase 

26 comprising of 4.5 mmol L-1 Na2CO3 and 0.8 mmol L-1 NaHCO3 was utilized. The peak times for 

27 nitrite-N and nitrate-N at 11.2 min and 16.9 min, respectively.

28 Text S3:

29 *H radical quenching experiment:

30 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) was utilized to capture the unstable hydrogen 

31 radical. In brief, 5.0 mL of electrolyte was mixed with 20 μL of DMPO and deoxygenated by 

32 bubbling N2. Potentiostatic electrolysis lasted for 5 minutes in the H-type cell under N2 protection. 

33 ESR measurements were conducted on a JEX-320 spectrometer operated at a frequency close to 

34 9.15 GHz, with a sweep frequency of 100 kHz and a power of 10 mW.
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35

36
37 Figure S1. The TEM imagines of Co-P (a) and Co (b) catalysts. The insets are the 
38 corresponding electron diffraction of the two catalysts.
39

40

41 Figure S2. HRTEM-EDS analysis spectra of Co-P (a) and Co (b).
42
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R1 Fixed(X) 0 N/A N/A
CPE1-T Fixed(X) 0 N/A N/A
CPE1-P Fixed(X) 1 N/A N/A
R2 Fixed(X) 0 N/A N/A
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44 Figure S3. EIS analysis of Co and Co-P.
45

46

47 Figure S4. NH3 calibration curves using Nessler Reagent method. 
48



49

50 Figure S5. (a) Ionic chromatography calibration curves and (b) the corresponding chromatograms 
51 of NO2

- in the concentration range of 0-100 mmol L-1 in which the solution environment is 0.1 
52 mol L-1 KOH. (c) Ionic chromatography calibration curves and (d) the corresponding 
53 chromatograms of NO3

- in the concentration range of 0-100 mmol L-1.
54
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56 Figure S6. j and FENH3 over Co-P/NF, Co/NF, and Ni foam in 1 mol L-1 KOH with 0.1 mmol L-1 
57 NO3

- at -0.1 V vs. RHE.
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64
65 Figure S7. ECSA measurements of Co-P (a) and Co (b) and corresponding double layer 
66 capacitance (c). (Reference Cu foil: 29 μF cm-2). (d) Bias-j for NH3 normalized by ECSA for Co 
67 and CoP in 100 mM KNO3 + 1M KOH
68
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70 Figure S8. j and yield rate for NH3 on Co-P@NF at -0.1 V vs. RHE in 1 M KOH electrolyte with 
71 or without 100 mM KNO3.
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73 Figure S9. 1H NMR spectra of the electrolyte after 14NO3
− and 15NO3

- reduction at -0.1 V vs. RHE.
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75

76 Figure S10. Ion chromatographic spectra of NO2
- over Co (a) and Co-P (b) at open circle potential.
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80 Figure S11. The open circle potential of Co and Co-P in 1 mol L-1 KOH with 0.1 mmol L-1 NO3
-. 
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84 Figure S12. j over Co-P catalyst in the 1 mol L-1 KOH with different NO3
- concentration.
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88 Figure S13. The cyclic stability of the catalysts towards NO3
– reduction reaction.

89
90



91
92 Figure S14. The TEM imagines of Co-P before (a) and after (b) long-term electrolysis. The 
93 insets are the corresponding electron diffractions of the chosen area. 
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95 Figure S15. The XRD patterns of Co-P before (up) and after (bottom) long-term electrolysis. 
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99 Figure S16. The XPS spectra of Co-P before (up) and after (bottom) long-term electrolysis.

100

2.03 2.02 2.01 2.00 1.99 1.98

EP
R

 In
te

ns
ity

 / 
a.

u.

g Value

Co@NF

Co-P@NF

g=2.0025

g=2.0025

101 Figure S17. The electron paramagnetic resonance spectra of Co-P@NF and Co@NF.
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103
104 Figure S18. (a) Comparison LSV curves of NF between OER-NO3

–RR and HzOR-NO3
–RR. (b) 

105 LSV curves of obtained NF and Co-P@NF catalysts in HzOR-NO3
–RR system
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108
109
110 Figure S19. The current density of H2 production in anion exchange membrane hydrazine 
111 electrolyzer (AEMHE), where the cathodic and anodic electrolytes are 1 M NaOH and 0.1 M 
112 NO3

– + 1 M NaOH, and the cathode and anode are both Co-P@NF (2×2 cm-2). 
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120 Table S1. HRTEM-EDS analysis spectra of Co and P in Co-P@NF
Element Atomic 

fraction 
(%)

Atomic error 
(%)

Atomic 
fraction (%)

Atomic error 
(%)

Co-P Co
P 13.05 1.5  0 --
Co 86.95 12.93 100 --

121

122

123 Table S2. Performance comparisons of Co-P@NF with previously reported electrocatalysts 

124 for NO3
- to NH3 electrocatalysis.

Cathode
Material

electrolytes Potent
ial

/V vs. RHE

FE/% Current 
density

/ mA cm-2

Refs

Cu50Ni50 alloy 1 M KOH, 0.1 
M NO3

-

-0.15 99 53 1

Cu-NBs-100 1 M KOH, 0.1 
M NO3

-

-0.15 95.3 288 2

HSCu-
AGB@C

1 M KOH, 0.1 
M NO3

-

-0.2 94.2 239.4 3

Oxide derived 
Cu

1 M KOH, 0.1 
M NO3

-

–0.15 92 137.5 4

Strained Ru 
nanoclusters

1 M KOH, 0.1 
M NO3

-

-0.2 100 120 5

FeB2 1 M KOH, 0.1 
M NO3

-

-0.6 98.6 325 6

CuCo2O4/CFs 1 M KOH, 0.1 
M NO3

-

-0.3 81.9 40 7

CuCoSP on 
Cu foil

0.1 M KOH, 
0.1 M NO3

-

–0.175 90.6 250.41 8

RuCo 1 M KOH, 0.1 
M NO3

-

0.071 98.4 250 9

VCo-Co3O4/CC 0.1 M NaOH, 
0.1 M NO3

-

-0.4 97.2 75 10

Co-NAs 1 M KOH, 0.1 
M NO3

-

-0.1 97 500 11

CoOx 
Nanosheets

0.1 M KOH, 
0.1 M NO3

-

-0.3 93.4 2.5 12

Co@NF 1 M KOH, 0.1 
M NO3

-

-0.1 ~100 212 This work

Co-P@NF 1 M KOH, 0.1 -0.1 97.5 1296 This work
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