Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1 Electrochemical Reduction of Nitrate to Ammonia on Ultra-Stable Amorphous Co-P 2 Electrocatalyst

- 3 Jin-Long Fan ¹, Sheng-Bo Liu ³, Ming-Liang Chen ⁴, Zhang-Xiong Wu ¹, Sheng-Peng Sun ^{1,*}, and
- 4 Yao-Yin Lou 1,2,*
- 5 ¹ School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science,
- 6 Soochow University, Suzhou, Jiangsu 215123, China
- 7 ² CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen
- 8 361021, P. R. China
- 9 ³ Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou
- 10 University of Science and Technology, Suzhou 215009, China
- 11 ⁴ Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, the
- 12 Netherlands
- 13 * Corresponding authors: shepsun@suda.edu.cn; yylou@iue.ac.cn

14 Text S1:

15 Determination of ammonia-N:

16 A centrifuge tube was used to contain $125 \,\mu$ L of the electrolyte, followed by sequential addition

17 of 125 μ L of sulfuric acid at a concentration of 0.5 mol L⁻¹, 250 μ L of buffer solution (pH = 7), 6

18 mL of ultra-pure water, and 250 µL of Nessler's reagent. After shaking, the mixture was allowed to

19 stand for 30 minutes and then tested at 420 nm using an ultraviolet-visible spectrophotometer (Hach-

20 DR3900).

21 Text S2:

22 Determination of nitrate-N and nitrite-N:

 $60 \ \mu L$ of the electrolyte was placed in a centrifuge tube, followed by the addition of 5.94 mL of ultra-pure water. The concentrations of nitrate-N and nitrite-N were then analyzed using an ion chromatograph (Thermo ICS-600) after shaking. For chromatography analysis, a mobile phase comprising of 4.5 mmol L⁻¹ Na₂CO₃ and 0.8 mmol L⁻¹ NaHCO₃ was utilized. The peak times for nitrite-N and nitrate-N at 11.2 min and 16.9 min, respectively.

28 Text S3:

29 *H radical quenching experiment:

30 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) was utilized to capture the unstable hydrogen 31 radical. In brief, 5.0 mL of electrolyte was mixed with 20 μ L of DMPO and deoxygenated by 32 bubbling N₂. Potentiostatic electrolysis lasted for 5 minutes in the H-type cell under N₂ protection. 33 ESR measurements were conducted on a JEX-320 spectrometer operated at a frequency close to 34 9.15 GHz, with a sweep frequency of 100 kHz and a power of 10 mW.

42

Figure S1. The TEM imagines of Co-P (a) and Co (b) catalysts. The insets are the corresponding electron diffraction of the two catalysts.

Figure S2. HRTEM-EDS analysis spectra of Co-P (a) and Co (b).

Figure S4. NH₃ calibration curves using Nessler Reagent method.

49

Figure S5. (a) Ionic chromatography calibration curves and (b) the corresponding chromatograms
of NO₂⁻ in the concentration range of 0-100 mmol L⁻¹ in which the solution environment is 0.1
mol L⁻¹ KOH. (c) Ionic chromatography calibration curves and (d) the corresponding
chromatograms of NO₃⁻ in the concentration range of 0-100 mmol L⁻¹.

Figure S6. j and $FE_{\rm NH_3}$ over Co-P/NF, Co/NF, and Ni foam in 1 mol L⁻¹ KOH with 0.1 mmol L⁻¹ NO_3^- at -0.1 V vs. RHE.

Figure S7. ECSA measurements of Co-P (a) and Co (b) and corresponding double layer
capacitance (c). (Reference Cu foil: 29 μF cm⁻²). (d) Bias-*j* for NH₃ normalized by ECSA for Co
and CoP in 100 mM KNO₃ + 1M KOH

Figure S8. *j* and yield rate for NH₃ on Co-P@NF at -0.1 V vs. RHE in 1 M KOH electrolyte with
 or without 100 mM KNO₃.

72

73 Figure S9. 1H NMR spectra of the electrolyte after ${}^{14}NO_3^-$ and ${}^{15}NO_3^-$ reduction at -0.1 V vs. RHE.

Figure S10. Ion chromatographic spectra of NO_2^- over Co (a) and Co-P (b) at open circle potential.

80 Figure S11. The open circle potential of Co and Co-P in 1 mol L⁻¹ KOH with 0.1 mmol L⁻¹ NO₃⁻.

Figure S12. *j* over Co-P catalyst in the 1 mol L^{-1} KOH with different NO₃⁻ concentration.

Figure S13. The cyclic stability of the catalysts towards NO₃⁻ reduction reaction.

Figure S14. The TEM imagines of Co-P before (a) and after (b) long-term electrolysis. The
insets are the corresponding electron diffractions of the chosen area.

95 Figure S15. The XRD patterns of Co-P before (up) and after (bottom) long-term electrolysis.

99 Figure S16. The XPS spectra of Co-P before (up) and after (bottom) long-term electrolysis.

100

101 Figure S17. The electron paramagnetic resonance spectra of Co-P@NF and Co@NF.

Figure S19. The current density of H_2 production in anion exchange membrane hydrazine electrolyzer (AEMHE), where the cathodic and anodic electrolytes are 1 M NaOH and 0.1 M $NO_3^- + 1$ M NaOH, and the cathode and anode are both Co-P@NF (2×2 cm⁻²).

Table S1. HRTEM-EDS analysis spectra of Co and P in Co-P@NF

Element	Atomic	Atomic error	Atomic Atomic error		
	fraction	(%)	fraction (%)	(%)	
	(%)				
	Co-P		Со		
Р	13.05	1.5	0		
Со	86.95	12.93	100		

122

123 Table S2. Performance comparisons of Co-P@NF with previously reported electrocatalysts

124

for NO_3^- to NH_3 electrocatalysis.

Cathode	electrolytes	Potent	FE/%	Current	Refs
Material	-	ial		density	
		/V vs. RHE		/ mA cm ⁻²	
Cu ₅₀ Ni ₅₀ alloy	1 M KOH, 0.1	-0.15	99	53	1
-	M NO ₃ -				
Cu-NBs-100	1 M KOH, 0.1	-0.15	95.3	288	2
	M NO ₃ -				
HSCu-	1 M KOH, 0.1	-0.2	94.2	239.4	3
AGB@C	M NO ₃ -				
Oxide derived	1 M KOH, 0.1	- 0.15	92	137.5	4
Cu	M NO ₃ -				
Strained Ru	1 M KOH, 0.1	-0.2	100	120	5
nanoclusters	M NO ₃ -				
FeB ₂	1 M KOH, 0.1	-0.6	98.6	325	6
	M NO ₃ -				
CuCo ₂ O ₄ /CFs	1 M KOH, 0.1	-0.3	81.9	40	7
	M NO ₃ -				
CuCoSP on	0.1 M KOH,	- 0.175	90.6	250.41	8
Cu foil	0.1 M NO ₃ -				
RuCo	1 M KOH, 0.1	0.071	98.4	250	9
	M NO ₃ -				
V _{Co} -Co ₃ O ₄ /CC	0.1 M NaOH,	-0.4	97.2	75	10
	0.1 M NO ₃ -				
Co-NAs	1 M KOH, 0.1	-0.1	97	500	11
	M NO ₃ -				
CoO _x	0.1 M KOH,	-0.3	93.4	2.5	12
Nanosheets	0.1 M NO ₃ -				
Co@NF	1 M KOH, 0.1	-0.1	~100	212	This work
	M NO ₃ -				
Co-P@NF	1 M KOH, 0.1	-0.1	97.5	1296	This work

		M NO ₃ -
125		
126		
127		
128	Refer	ences:
129	1	Wang, Y. et al. Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of
130		Intermediate Adsorption. Journal of the American Chemical Society 142, 5702-5708,
131		doi:10.1021/jacs.9b13347 (2020).
132	2	Hu, Q. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and
133		defect exposure for efficient nitrate-ammonia conversion. Energy & Environmental Science 14,
134		4989-4997, doi:10.1039/d1ee01731d (2021).
135	3	Hu, Q. et al. Grain Boundaries Engineering of Hollow Copper Nanoparticles Enables Highly
136		Efficient Ammonia Electrosynthesis from Nitrate. CCS Chemistry 4, 2053-2064,
137		doi:10.31635/ccschem.021.202101042 (2022).
138	4	Yuan, J., Xing, Z., Tang, Y. & Liu, C. Tuning the Oxidation State of Cu Electrodes for Selective
139		Electrosynthesis of Ammonia from Nitrate. ACS Applied Materials & Interfaces 13, 52469-
140		52478, doi:10.1021/acsami.1c10946 (2021).
141	5	Li, J. et al. Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium
142		Nanoclusters. Journal of the American Chemical Society 142, 7036-7046,
143		doi:10.1021/jacs.0c00418 (2020).
144	6	Zhang, G. et al. Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes.
145		Angewandte Chemie International Edition 62, doi:10.1002/anie.202300054 (2023).
146	7	Niu, Z. et al. Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate
147		reduction to ammonia. Chemical Engineering Journal 450, doi:10.1016/j.cej.2022.138343
148		(2022).
149	8	He, W. et al. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate
150		tandem electroreduction of nitrate to ammonia. Nature Communications 13,
151		doi:10.1038/s41467-022-28728-4 (2022).
152	9	Zhu, W. et al. Weakened d-p orbital hybridization inin situreconstructed Ru/β-
153		Co(OH)2heterointerfaces for accelerated ammonia electrosynthesis from nitrates. Energy &
154		Environmental Science 16, 2483-2493, doi:10.1039/d3ee00371j (2023).
155	10	Deng, Z. et al. High-Efficiency Electrochemical Nitrate Reduction to Ammonia on a Co3O4
156		Nanoarray Catalyst with Cobalt Vacancies. ACS Applied Materials & Interfaces 14, 46595-
157		46602, doi:10.1021/acsami.2c12772 (2022).
158	11	Deng, X., Yang, Y., Wang, L., Fu, X. Z. & Luo, J. L. Metallic Co Nanoarray Catalyzes Selective
159		NH3 Production from Electrochemical Nitrate Reduction at Current Densities Exceeding 2 A
160		cm-2. Advanced Science 8, doi:10.1002/advs.202004523 (2021).
161	12	Wang, J. et al. Electrocatalytic Reduction of Nitrate to Ammonia on Low-Cost Ultrathin CoOx
162		Nanosheets. ACS Catalysis 11, 15135-15140, doi:10.1021/acscatal.1c03918 (2021).
163		