Supporting Information

Pore-Size Tuning of Hard Carbon to Optimize its Wettability for

Efficient Na⁺ Storage

Lin Guo¹, Minyi Huang¹, Weicheng Liu^{1,2}, Hanqi Zhu¹, Yong Cheng¹, Ming-Sheng Wang^{1,3*}

¹State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China

²Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China

³*Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), Xiamen Key Laboratory of High Performance Metals and Materials (Xiamen University)*

*Address correspondence to: mswang@xmu.edu.cn

Supporting Information includes:

- **1. Supplementary Discussion**
- 2. Supplementary Figures S1 to S10
- 3. Supplementary Tables S1 to S3
- 4. Supplementary Movies: Movies S1 to S2
- 5. Supplementary References

1. Supplementary Discussion

By adding TEOS with various mass ratios during polymerization, N-doped HMCNTs with smaller pore sizes (HMCNTs-2.3, 4.2, 5.1 and 6.1) were prepared. TPOS, which undergoes slower hydrolysis and condensation than TEOS, provides better control over silica core and primary particle formation. Specifically, the steric effect of TPOS leads to a slow hydrolysis process, which resulted in the open mesochannels, while the fast hydrolysis kinetics of TEOS leads to smaller mesochannels. ¹ To further increase the pore size, we can modify the water-to-ethanol ratio during the polymerization process. During the synthesis process, an increase in the proportion of water in the solvent leads to a more uneven dispersion of silica in the solution system, resulting in the larger silica particles encapsulated in the shells of nanotubes, thereby forming larger pores after etching (i.e. HMCNTs-7.6 and 7.7).

2. Supplementary Figures

Figure S1 SEM and TEM images of HMCNTs-7.6.

Figure S2 HADDF and EDS mapping images of hollow mesoporous carbon nanotubes. (a) HMCNTs-2.3; (b) HMCNTs-4.2; (c) HMCNTs-5.1; (d) HMCNTs-6.1; (e) HMCNTs-7.6; (f) HMCNTs-7.7.

Figure S3 (a) Pore size distributions. (b) N_2 isothermal adsorption/desorption curves. (c) Dynamic contact angles between the electrolyte and HMNCTs-7.6 electrodes.

Figure S4 (a) XRD spectrum and (b) Raman spectrum of the series of HMCNTs.

Figure S5 (a) XPS survey, (b) C 1s spectrum and (c) N 1s spectrum of HMCNTs-2.3. (d) XPS survey, (e) C 1s spectrum and (f) N 1s spectrum of HMCNTs-4.2. (g) XPS survey, (h) C 1s spectrum and (i) N 1s spectrum of HMCNTs-5.1.

Figure S6 (a) XPS survey, (b) C 1s spectrum and (c) N 1s spectrum of HMCNTs-6.1. (d) XPS survey, (e) C 1s spectrum and (f) N 1s spectrum of HMCNTs-7.6. (g) XPS survey, (h) C 1s spectrum and (i) N 1s spectrum of HMCNTs-7.7.

Figure S7 CV curves of HMCNs-2.3 at (a) different scan rates and (b) the first three cycles at 0.2 mV s⁻¹. (c) Capacitive contribution of HMCNs-2.3. CV curves of HMCNs-4.2 at (d) different scan rates and (e) 0.2 mV s⁻¹. (f) Capacitive contribution of HMCNs-4.2. CV curves of HMCNs-5.1 at (g) different scan rates and (h) 0.2 mV s⁻¹. (i) Capacitive contribution of HMCNs-5.1. CV curves of HMCNs-7.6 at (j) different scan rates and (k) 0.2 mV s⁻¹. (l) Capacitive contribution of HMCNs-7.6. CV curves of HMCNs-7.7 at (m) different scan rates and (n) 0.2 mV s⁻¹. (o) capacitive contribution of HMCNs-7.7.

Figure S8 $D_{\text{Na+}}$ of HMCNTs-7.6 in the (a) charge and (b) discharge processes. (c) Nyquist fitting plots of HMCNTs-7.6.

Figure S9 (a) Cycling performance at 0.1 A g⁻¹ of HMCNTs-7.6. (b) Rate performance of HMCNTs-7.6. (c) Cycling performance at 1 A g⁻¹ of HMCNTs-7.6.

Figure S10 Performance comparison with the carbonaceous SIB anodes in recent reports.

3. Supplementary Tables

Material	Specific Surface Area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)				
HMCNTs-2.3	710.6876	0.409852				
HMCNTs-4.2	924.8423	0.961903				
HMCNTs-5.1	683.2594	0.873429				
HMCNTs-6.1	1303.7746	2.002073				
HMCNTs-7.6	504.5282	0.955496				
HMCNTs-7.7	827.1601	1.592770				

Table S1 BET test results of all the HMCNTs samples

Table S2 Element content ratios of all the the HMCNTs samples

Material —	Element Content (at.%)			
	С	Ν	0	
HMCNTs-2.3	85.21	2.50	12.29	
HMCNTs-4.2	90.94	3.05	6.01	
HMCNTs-5.1	90.22	3.64	6.14	
HMCNTs-6.1	90.48	2.95	6.57	
HMCNTs-7.6	84.73	1.74	13.53	
HMCNTs-7.7	86.09	7.01	6.90	

Table S3 Electrical performance comparison among different carbonaceous anodes for

 SIBs

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
AHC1100 / $175 \text{ mA h g}^{-1} \text{ at } 0.05 \text{ A g}^{-1}$ $200 \text{ mA h g}^{-1} \text{ at } 0.025 \text{ A g}$ [2] 160 mA h g^{-1} at 0.1 A g^{-1} $160 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}$ $1 \text{ after } 20 \text{ cycles}$ [2] 140 mA h g^{-1} at 0.2 A g^{-1} $186 \text{ mA h g}^{-1} \text{ at } 0.2 \text{ A g}^{-1}$ $1 \text{ after } 20 \text{ cycles}$ [2] PTCDI-DAQ@C nearl $181 \text{ mA h g}^{-1} \text{ at } 2 \text{ A g}^{-1}$ $173 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}$ $173 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}$ PTCDI-DAQ@C y $180 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}$ $173 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}$ $1100 \text{ 179 mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}$ $131 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}$ [3] $\%$ $179 \text{ mA h g}^{-1} \text{ at } 5 \text{ A g}^{-1}$ $after 1000 \text{ cycles}$ $164 \text{ at h g}^{-1} \text{ at } 5 \text{ A g}^{-1}$ $after 1000 \text{ cycles}$
$\frac{140 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}}{140 \text{ mA h g}^{-1} \text{ at } 0.2 \text{ A g}^{-1}}$ $\frac{140 \text{ mA h g}^{-1} \text{ at } 0.2 \text{ A g}^{-1}}{186 \text{ mA h g}^{-1} \text{ at } 1A \text{ g}^{-1}}$ $\frac{186 \text{ mA h g}^{-1} \text{ at } 1A \text{ g}^{-1}}{173 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}}$ $\frac{173 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}}{173 \text{ mA h g}^{-1} \text{ after } 2500 \text{ cycles}}$ $\frac{100 \text{ 179 mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}}{131 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}}$ $\frac{160 \text{ mA h g}^{-1} \text{ at } 4 \text{ A g}^{-1}}{131 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}}$ $\frac{160 \text{ mA h g}^{-1} \text{ at } 4 \text{ A g}^{-1}}{131 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}}$ $\frac{160 \text{ mA h g}^{-1} \text{ at } 5 \text{ A g}^{-1}}{131 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}}$ $\frac{160 \text{ mA h g}^{-1} \text{ at } 5 \text{ A g}^{-1}}{131 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}}$ $\frac{160 \text{ mA h g}^{-1} \text{ at } 5 \text{ A g}^{-1}}{131 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$PTCDI-DAQ@C \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$
PTCDI-DAQ@C y 180 mA h g ⁻¹ at 3 A g ⁻¹ after 2500 cycles 100 179 mA h g ⁻¹ at 4 A g ⁻¹ 131 mA h g ⁻¹ at 3 A g ⁻¹ % 179 mA h g ⁻¹ at 5 A g ⁻¹ after 1000 cycles 164 mA h g ⁻¹ at 5 A g ⁻¹ after 1000 cycles 164 mA h g ⁻¹ at 5 A g ⁻¹ after 1000 cycles
PTCDI-DAQ@C 100 179 mA h g ⁻¹ at 4 A g ⁻¹ % 179 mA h g ⁻¹ at 5 A g ⁻¹ after 1000 cycles 164 after 1000 cycles
% 179 mA h g ⁻¹ at 5 A g ⁻¹ after 1000 cycles
$164 \text{ mA h } \text{g}^{-1} \text{ at } 10 \text{ A } \text{g}^{-1}$
CEAC/NIP 600 27% 156.3 mA h g ⁻¹ at 0.1A g ⁻¹ 142.6 mA h g ⁻¹ at 0.1 A g ⁻¹ [4]
$\frac{1}{30.1 \text{ mA h g}^{-1} \text{ at 4 A g}^{-1}} = \frac{1}{1} \text{ after 200 cycles} $
330 mA h g^{-1} at 0.1A g $^{-1}$ 280 mA h g $^{-1}$ at 2.0 A g $^{-1}$
NPDC / $220 \text{ mA h g}^{-1} \text{ at } 1 \text{ A g}^{-1}$ after 2000 cycles [5]
$188 \text{ mA h g}^{-1} \text{ at } 2 \text{ A g}^{-1} \qquad 122 \text{ mA h g}^{-1} \text{ at } 5.0 \text{ A g}^{-1} \qquad 133 \text{ mA h g}^{-1} \text{ at } 5.0 \text{ A g}^{-1} \\ 133 \text{ mA h g}^{-1} \\ 1$
$156 \text{ mA h g}^{-1} \text{ at } 5 \text{ A g}^{-1} \qquad \text{for } 28000 \text{ cycles}$
$321.6 \text{ mA h g}^{-1} \text{ at } 0.028 \text{ A g}^{-1}$
295.8 mA h g^{-1} at 0.056 A g^{-1}
Tea-1100-NP 90% $281.0 \text{ mA h g}^{-1} \text{ at } 0.14 \text{ A g}^{-1} 77.2 \text{ mA h g}^{-1} \text{ at } 5.0 \text{ A g}^{-1}$ [6]
$268.0 \text{ mA h g}^{-1} \text{ at } 0.28 \text{ A g}^{-1}$ after 300 cycles
$251.5 \text{ mA h g}^{-1} \text{ at } 0.56 \text{ A g}^{-1}$
$\frac{224.5 \text{ mA h g}^{-1} \text{ at } 1.4 \text{ A g}^{-1}}{220 \text{ at } 1 \text{ at } 1.4 \text{ C}^{-1} \text{ at } 1.4 \text{ A g}^{-1}}$
$230 \text{ mA h g}^{-1} \text{ at } 0.05 \text{ A g}^{-1}$
$200 \text{ mA h g}^{-1} \text{ at } 0.2 \text{ A g}^{-1} $ $153 \text{ mA h g}^{-1} \text{ at } 1.0 \text{ A g}^{-1} $
$110_2(a)CNT(a)C$ / $159.6 \text{ mA h g}^{-1} \text{ at I A g}^{-1}$ after 1000 cycles [7]
141.6 mA h g $^{\circ}$ at 2 A g $^{\circ}$
115.5 mA h g- ¹ at 4 A g ⁻¹
$2/5 \text{ mA h g}^2$ at 0.025 A g ²
260 mA n g^{-} at 0.05 A g ⁻ 226 mA h g^{-} at 0.125 A g ⁻ 260 mA h g^{-} at 0.05 A g ⁻
HCNP-1150 / $\frac{250 \text{ mA n g}^2 \text{ at } 0.125 \text{ A g}^2}{181 \text{ mA h g}^2 \text{ at } 0.25 \text{ A g}^2} = 200 \text{ mA n g}^2 \text{ at } 0.05 \text{ A g}^2}$ [8]
$181 \text{ mA n g}^2 \text{ at } 0.25 \text{A g}^2 \qquad \text{after } 200 \text{ cycles}$ $72 \text{ mA h g}^1 \text{ at } 1.25 \text{ A g}^1$
72 IIIA II g at 1.25 A g
$\frac{43 \text{ mA fr} \text{g}}{249 \text{ mA h} \text{g}^{-1} \text{ at } 0.03 \text{ A} \text{g}^{-1}}$
249 mA fi g at 0.05 A g 229 mA h g^{-1} at 0.06 A g^{-1}
227 mA in g at 0.00 A g 211 mA h g^{-1} at 0.15 A g^{-1}
PO-SC-S 80% 187 mA h σ^{-1} at 0.3 A σ^{-1} / [0]
$170 \text{ mA h g}^{-1} \text{ at } 0.6 \text{ A g}^{-1}$
$145 \text{ mA h } \sigma^{-1} \text{ at } 1.5 \text{ A } \sigma^{-1}$
$125 \text{ mA h g}^{-1} \text{ at } 3 \text{ A g}^{-1}$

MoO2/N-C (500°C)	/	238 mA h g ⁻¹ at 0.1 A g ⁻¹ 197 mA h g ⁻¹ at 0.2 A g ⁻¹ 161 mA h g ⁻¹ at 0.4 A g ⁻¹ 126 mA h g ⁻¹ at 1.6 A g ⁻¹ 80 mA h g ⁻¹ at 6.4 A g ⁻¹	134 mA h g^{-1} at 0.8 A g^{-1} after 200 cycles 115 mA h g^{-1} at 5 A g^{-1} after 5000 cycles	[10]
N/Se-CNs	/	$302 \text{ mA h g}^{-1} \text{ at } 0.1 \text{ A g}^{-1}$ $242 \text{ mA h g}^{-1} \text{ at } 0.2 \text{ A g}^{-1}$ $201 \text{ mA h g}^{-1} \text{ at } 0.5 \text{ A g}^{-1}$ $182 \text{ mA h g}^{-1} \text{ at } 1 \text{ A g}^{-1}$ $163 \text{ mA h g}^{-1} \text{ at } 2 \text{ A g}^{-1}$ $139 \text{ mA h g}^{-1} \text{ at } 5 \text{ A g}^{-1}$	218 mA h g^{-1} at 0.1A g^{-1} after 100 cycles 115 mA h g^{-1} at 5 A g^{-1} after 2000 cycles	[11]
HNC600	/	320 mA h g ⁻¹ at 0.1 A g ⁻¹ 303 mA h g ⁻¹ at 0.2 A g ⁻¹ 261 mA h g ⁻¹ at 0.4 A g ⁻¹ 170 mA h g ⁻¹ at 1.6 A g ⁻¹ 125 mA h g ⁻¹ at 6.4 A g ⁻¹	120 mA h g ⁻¹ at 1 A g ⁻¹ after 2000 cycles	[12]
HMCNTs-6.1	75%	450.0 mA h g ⁻¹ at 0.05 A g ⁻¹ 358.5 mA h g ⁻¹ at 0.1 A g ⁻¹ 331.3 mA h g ⁻¹ at 0.2 A g ⁻¹ 284.9 mA h g ⁻¹ at 0.5 A g ⁻¹ 236.4 mA h g ⁻¹ at 1.0 A g ⁻¹ 201.8 mA h g ⁻¹ at 2.0 A g ⁻¹ 176.6 mA h g ⁻¹ at 4.0 A g ⁻¹	200 mA h g ⁻¹ at 1.0 A g ⁻¹ after 1000 cycles	This Work
HMCNTs-5.1	88%	432.7 mA h g ⁻¹ at 0.05 A g ⁻¹ 327.4 mA h g ⁻¹ at 0.1 A g ⁻¹ 300.0 mA h g ⁻¹ at 0.2 A g ⁻¹ 258.1 mA h g ⁻¹ at 0.5 A g ⁻¹ 222.3 mA h g ⁻¹ at 1.0 A g ⁻¹ 200.0 mA h g ⁻¹ at 2.0 A g ⁻¹ 182.0 mA h g ⁻¹ at 4.0 A g ⁻¹	198 mA h g ⁻¹ at 1.0 A g ⁻¹ after 1000 cycles	This Work
HMCNTs-4.2	65%	369.0 mA h g ⁻¹ at 0.05 A g ⁻¹ 292.0 mA h g ⁻¹ at 0.1 A g ⁻¹ 273.2 mA h g ⁻¹ at 0.2 A g ⁻¹ 237.9 mA h g ⁻¹ at 0.5 A g ⁻¹ 205.5 mA h g ⁻¹ at 1.0 A g ⁻¹ 184.2 mA h g ⁻¹ at 2.0 A g ⁻¹ 166.7 mA h g ⁻¹ at 4.0 A g ⁻¹	155 mA h g ⁻¹ at 1.0 A g ⁻¹ after 1000 cycles	This Work

4. Supplementary Movies

Movies S1

In-situ TEM observation of the sodiation behavior of a single HMCNT-2.3. (Displayed with $10 \times$ speed)

Movies S2

In-situ TEM observation of the sodiation and plating behavior of a single HMCNT-6.1. (Displayed with $20 \times$ speed)

5. Supplementary References

- 1. H. W. Zhang, O. Noonan, X. D. Huang, Y. N. Yang, C. Xu, L. Zhou and C. Z. Yu, *Acs Nano*, 2016, **10**, 4579-4586.
- E. Gibertini, F. Liberale, C. Dossi, G. Binda, B. Mattioli, R. Bettinetti, A. Maspero, M. Fiore, R. Ruffo and L. Magagnin, *Journal of Applied Electrochemistry*, 2021, **51**, 1665-1673.
- 3. F. Yu, W. Tang, S. C. Wang, M. C. Guo, W. W. Deng, J. H. Hu, S. Jia and C. Fan, *Advanced Functional Materials*, 2023, **33**.
- 4. R. M. Bhattarai, K. Chhetri, S. Natarajan, S. Saud, S. J. Kim and Y. S. Mok, *Chemosphere*, 2022, **303**.
- 5. C. C. Sun, F. J. Kong, L. L. Fan, S. Tao, G. K. Zhang, S. Q. Chu, W. S. Chu and L. Song, *Chemical Engineering Journal*, 2023, **470**.
- H. Y. Wang, H. X. Chen, C. Chen, M. Li, Y. M. Xie, X. C. Zhang, X. W. Wu, Q. B. Zhang and C. Z. Lu, *Chinese Chemical Letters*, 2023, 34.
- 7. Y. E. Zhu, L. P. Yang, J. Sheng, Y. N. Chen, H. C. Gu, J. P. Wei and Z. Zhou, *Advanced Energy Materials*, 2017, **7**.
- L. F. Xiao, Y. L. Cao, W. A. Henderson, M. L. Sushko, Y. Y. Shao, J. Xiao, W. Wang, M. H. Engelhard, Z. M. Nie and J. Liu, *Nano Energy*, 2016, **19**, 279-288.
- F. Xie, Y. S. Niu, Q. Q. Zhang, Z. Y. Guo, Z. L. Hu, Q. Zhou, Z. Xu, Y. Q. Li, R. T. Yan, Y. X. Lu,
 M. M. Titirici and Y. S. Hu, *Angewandte Chemie-International Edition*, 2022, **61**.
- B. Huang, S. Liu, X. Zhao, Y. W. Li, J. W. Yang, Q. Q. Chen, S. H. Xiao, W. H. Zhang, H. E. Wang and G. Z. Cao, *Science China-Materials*, 2021, **64**, 85-95.
- 11. B. B. Yang, S. T. Liu, Y. V. Fedoseeva, A. V. Okotrub, A. A. Makarova, X. L. Jia and J. S. Zhou, *Journal of Power Sources*, 2021, **493**.
- 12. Q. Z. Jin, K. L. Wang, W. Li, H. M. Li, P. Y. Feng, Z. C. Zhang, W. Wang, M. Zhou and K. Jiang, *Journal of Materials Chemistry A*, 2020, **8**, 22613-22619.