1 Electronic Supplementary Information

2 Amorphous SiO₂-based All-Inorganic Self-Supporting Nanofiber Membrane: A

3 Flexible and Breathable Sensing Platform for NO₂ Detection

- 4 Jia Liu,^{a‡} Qian Yu,^{a‡} Yumeng Liu,^a Xinlei Zhang,^a Zhibo Yang,^b Xiaoqiang Yin,^b
- 5 Hongbing Lu,^{a,*} Jinniu Zhang,^{c,*} Jianzhi Gao^{a,*} and Benpeng Zhu^{d,*}
- 6
- 7 a School of Physics and Information Technology, Shaanxi Normal University, Xi'an
- 8 710062, China. E-mail: hblu@snnu.edu.cn; jianzhigao@snnu.edu.cn
- 9 ^b Shenzhen BYD Lithium Battery Company Limited, Shenzhen, 518000, China
- 10 ° School of Science, Xi'an University of Posts and Telecommunications, Xi'an
- 11 710121, China. E-mail: jinniuzhang@xupt.edu.cn
- 12 ^d School of Optical and Electronic Information, Wuhan National Laboratory for
- 13 Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074,
- 14 China. E-mail: benpengzhu@hust.edu.cn
- 15 † Electronic supplementary information (ESI) available. See DOI:
- 16 ‡ These authors contributed equally.
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32

1 Preparation of FSS NF sensors with different Pd contents.

Other FSS NF sensors with varied PdO contents were prepared by adding 0.5 mg,
4 mg, and 8 mg of PdCl₂ to Sn sols, respectively. The remaining manufacturing steps
were identical to those of the FSS PdO-SnO₂-SiO₂/SiO₂ sensor. The corresponding
sensors were labeled as (0.5 mg) PdO-SnO₂-SiO₂/SiO₂ NF sensor, (4 mg) PdOSnO₂-SiO₂/SiO₂ NF sensor, and (8 mg) PdO-SnO₂-SiO₂/SiO₂ NF sensor,
respectively.

8 Fabrication of commercially available PET sensors

9 Briefly, PdO-SnO₂ NFs was mixed with 70 ethanol to obtain the corresponding
10 slurry. The slurry was then dripped on a commercially available sensor substrate
11 made of PET, with a spacing of almost 0.1 mm, in order to obtain the commercially
12 available PET sensor. All the fabricated sensors were aged in air at 80 °C for 2 h.

- -- •

Fig. S4 SEM images with different magnifications of PdO–SiO₂–SnO₂/SiO₂ NF membrane.

- _

Fig. S16 Response-temperature curves of the FSS PdO-SnO₂-SiO₂/SiO₂ NF sensor to various

gases.

	Gas molecules	Adsorption energy (eV)	Bader charge transfer (e
SnO ₂	NO ₂	-0.9.1 -0892	0.581
	CO	-0.49 ³	$0 \sim 0.14^3$
	C ₆ H ₅ CH ₃	$-0.10,^4$ -0.28^2	0.22^{2}
	НСНО	$0.04,^{1}-0.26^{2}$	$0.01,^1 0.17^2$
	CH ₃ COCH ₃	$0.41,^4 - 0.22^2$	0.062
	CH ₃ OH	0.194	/
	CH ₃ CH ₂ OH	-0.03 , ¹ 0.72^4	0.0031
	H_2	$-0.26,^{5}-0.12 \sim -0.29^{6}$	0.004^{5}
	NH ₃	-0.194	0.12^{1}
	CH_4	-0.03 ¹	0.01^{1}
Pd–SnO ₂	NO_2	-1.24 ²	/
	СО	-0.637	0.137
	CH_4	-0.478	0.10^{8}
Pt-SnO ₂	NO_2	-1.73 ²	0.39 ²
	$C_6H_5CH_3$	-0.43 ²	0.22^{2}
	НСНО	-0.52^{2}	0.17^{2}
			_
	CH ₃ COCH ₃	-0.302	0.062
	CH ₃ COCH ₃	-0.302	0.062

Table S1 Adsorption energy and Bader charge transfer of SnO₂, Pd–SnO₂, and Pt– SnO₂ toward various gas molecules in reported literatures.

1 References

- 2 1.Y. Zhang, Y. Jiang, Z. Yuan, B. Liu, Q. Zhao, Q. Huang, Z. Li, W. Zeng, Z. Duan
 and H. Tai, *Small*, 2023, 19, 2303631.
- 4 2. Z. Song, W. Tang, Z. Chen, Z. a. Wan, C. L. J. Chan, C. Wang, W. Ye and Z. Fan, *Small*, 2022, 18, 2203212.
- 6 3. M. Eslamian, A. Salehi and E. Nadimi, Surface Science, 2021, 708, 121817.
- 7 4. L. Zhang, J. Shi, Y. Huang, H. Xu, K. Xu, P. K. Chu and F. Ma, ACS applied *materials & interfaces*, 2019, 11, 12958-12967.
- 9 5. W. Du, W. Si, W. Du, T. Ouyang, F. Wang, M. Gao, L. Wu, J. Liu, Z. Qian and W.
- 10 Liu, Journal of Alloys and Compounds, 2020, 834, 155209.
- 11 6. A. Umar, H. Y. Ammar, R. Kumar, T. Almas, A. A. Ibrahim, M. S. AlAssiri, M.
- Abaker and S. Baskoutas, *International Journal of Hydrogen Energy*, 2020, 45, 26388-26401.
- 7. P. Bechthold, M. E. Pronsato and C. Pistonesi, *Applied Surface Science*, 2015, 347, 291-298.
- 16 8. L. Xue, Y. Ren, Y. Li, W. Xie, K. Chen, Y. Zou, L. Wu and Y. Deng, Small, 2023,
- **17 19**, 2302327