Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Regulation of a Ni₃Sn₂ intermetallic catalyst using highly dispersed Pd species to boost propyne semi-hydrogenation

Kelin Yan,^a Xiaohu Ge,^{*a} Wenhua Li,^a Yijing Liang,^a Weijian Xiong,^a Jing Zhang,^a Gang Qian,^a De Chen,^b

Yueqiang Cao,^{*a} Xinggui Zhou,^a Xuezhi Duan^a

^{*a*} State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of

Science and Technology, Shanghai 200237, China

^b Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491,

Norway

*Corresponding Author: xhge@ecust.edu.cn; yqcao@ecust.edu.cn

Samples	Ni loading	Sn loading	Pd loading	Ni/Pd atomic
	(wt%) ^[a]	(wt%) ^[a]	(wt%) ^[a]	ratio
Ni ₃ Sn ₂	9.92	10.74	/	/
(Ni _{0.9} Pd _{0.1}) ₃ Sn ₂	7.46	9.94	1.55	8.65
(Ni _{0.8} Pd _{0.2}) ₃ Sn ₂	7.21	7.88	3.00	4.32

Table S1. Composition of the Ni_3Sn_2 , $(Ni_{0.9}Pd_{0.1})_3Sn_2$ and $(Ni_{0.8}Pd_{0.2})_3Sn_2$ catalysts.

[a] Determined by ICP-AES.

Table S2. Adsorption configurations and energies of propyne on Ni_3Sn_2 catalyst.

Table S3. Adsorption configurations and energies of propyne on $(Ni_{0.9}Pd_{0.1})_3Sn_2$ catalyst.

Table S4. Adsorption configurations and energies of propyne and hydrogen atom on $(Ni_{0.9}Pd_{0.1})_3Sn_2$

Fig. S1. XRD profiles of Ni-LDHs, Ni₃Sn₂-LDHs, (Ni_{0.9}Pd_{0.1})₃Sn₂-LDHs and (Ni_{0.8}Pd_{0.2})₃Sn₂-LDHs.

Fig. S2. Typical SEM images of (a) Ni_3Sn_2 -LDHs, (b) $(Ni_{0.9}Pd_{0.1})_3Sn_2$ -LDHs and (c) $(Ni_{0.8}Pd_{0.2})_3Sn_2$ -LDHs.

Fig. S3. HAADF-STEM images and corresponding histograms of the particle size distributions of Ni catalyst.

Fig. S4. HAADF-STEM EDS line-scanning profiles of Ni catalyst.

Fig. S5. HAADF-STEM EDS mapping analyses of Ni catalyst.

Fig. S6. Wulff crystals for Ni_3Sn_2 and $(Ni_{0.9}Pd_{0.1})_3Sn_2$ intermetallics, where the crystal facets by Miller indices are shown by different colors.

Fig. S7. Schematical illustrations of (a) $Ni_3Sn_2(101)$ and (b) $(Ni_{0.9}Pd_{0.1})_3Sn_2(101)$. The green, gray and yellow balls represent Ni, Sn and Pd atoms, respectively.

Fig. S8. Propane selectivity as a function of temperature over the Ni_3Sn_2 , $(Ni_{0.9}Pd_{0.1})_3Sn_2$ and $(Ni_{0.8}Pd_{0.2})_3Sn_2$ catalysts.

Fig. S9. Propyne conversion as a function of temperature over the Ni catalyst.

Fig. S10. Propylene selectivity as a function of temperature over the Ni catalyst.

Fig. S11. The propylene and propane formation rate as a function of temperature over the Ni₃Sn₂ catalyst.

Fig. S12. The propylene and propane formation rate as a function of temperature over the $(Ni_{0.9}Pd_{0.1})_3Sn_2$ catalyst.

Fig. S13. The propylene and propane formation rate as a function of temperature over the $(Ni_{0.8}Pd_{0.2})_3Sn_2$ catalyst.

Fig. S14. Catalytic performance of the $(Ni_{0.9}Pd_{0.1})_3Sn_2$ catalyst under different space velocities.

Fig. S15. Catalytic performance of the Ni_3Sn_2 catalyst under different space velocities.

Fig. S16. Catalytic performance of the $(Ni_{0.8}Pd_{0.2})_3Sn_2$ catalyst under different space velocities.